Skip to main content
Log in

Stability and Bifurcation Analysis of Hassell–Varley Prey–Predator System with Fear Effect

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we study a prey–predator system with Hassell–Varley functional response, which is a predator-dependent functional response. Our goal is to study the dynamics of the system in the presence of fear of predation risk. Hassell–Varley functional response is used when the predator population forms a fixed number of tight groups like for foraging purposes. Those predators can be terrestrial and aquatic. We assume that the birth rate of prey population reduces due to fear of the predator. Here, we have discussed the existence of biologically relevant equilibria and derived the condition for local asymptotic stability. Further, permanence and persistence are discussed to understand the dynamics of the system. The system undergoes Hopf bifurcation for both: the fear parameter f and interference coefficient \(\gamma \). Stability and the direction of Hopf bifurcation are also discussed. We observe that limit cycle oscillation can be prevented by increasing the cost of fear of the predator population. Numerical simulation is performed to substantiate our analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lima, S.L., Dill, L.M.: Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68(4), 619–640 (1990)

    Google Scholar 

  2. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Google Scholar 

  3. Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Google Scholar 

  4. Altendorf, K.B., Laundré, J.W., López González, C .A., Brown, J .S.: Assessing effects of predation risk on foraging behavior of mule deer. J. Mammal. 82(2), 430–439 (2001)

    Google Scholar 

  5. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Wang, X., Zou, X.: Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Das, A., Samanta, G.: Modeling the fear effect on a stochastic prey–predator system with additional food for the predator. J. Phys. A Math. Theor. 51(46), 465601 (2018)

    MathSciNet  Google Scholar 

  8. Mondal, S., Maiti, A., Samanta, G.: Effects of fear and additional food in a delayed predator–prey model. Biophys. Rev. Lett. 13(04), 157–177 (2018)

    Google Scholar 

  9. Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39, 100770 (2019)

    Google Scholar 

  10. Sha, A., Samanta, S., Martcheva, M., Chattopadhyay, J.: Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect. J. Biol. Dyn. 13(1), 301–327 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: Stability and bifurcation analysis of a three-species food chain model with fear. Int. J. Bifurc. Chaos 28(01), 1850009 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: A three species food chain model with fear induced trophic cascade. Int. J. Appl. Comput. Math. 5(4), 100 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Kumar, V., Kumari, N.: Controlling chaos in three species food chain model with fear effect. AIMS Math. 5(2), 828 (2020)

    MathSciNet  Google Scholar 

  14. Chen, S., Liu, Z., Shi, J.: Nonexistence of nonconstant positive steady states of a diffusive predator–prey model with fear effect. J. Nonlinear Model. Anal. 1(1), 47–56 (2019)

    Google Scholar 

  15. Sasmal, S.K.: Population dynamics with multiple allee effects induced by fear factors—a mathematical study on prey–predator interactions. Appl. Math. Model. 64, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, H., Cai, Y., Fu, S., Wang, W.: Impact of the fear effect in a prey–predator model incorporating a prey refuge. Appl. Math. Comput. 356, 328–337 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Kundu, K., Pal, S., Samanta, S., Sen, A., Pal, N.: Impact of fear effect in a discrete-time predator–prey system. Bull. Calcutta Math. Soc. 110, 245–264 (2018)

    Google Scholar 

  18. Duan, D., Niu, B., Wei, J.: Hopf–hopf bifurcation and chaotic attractors in a delayed diffusive predator–prey model with fear effect. Chaos Solitons Fractals 123, 206–216 (2019)

    MathSciNet  Google Scholar 

  19. Wang, X., Zou, X.: Pattern formation of a predator–prey model with the cost of anti-predator behaviors. Math. Biosci. Eng. 15(3), 775–805 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Pal, S., Majhi, S., Mandal, S., Pal, N.: Role of fear in a predator–prey model with Beddington–Deangelis functional response. Zeitschrift für Naturforschung A 74(7), 581–595 (2019)

    Google Scholar 

  21. Hassell, M., Varley, G.: New inductive population model for insect parasites and its bearing on biological control. Nature 223(5211), 1133 (1969)

    Google Scholar 

  22. Partridge, B.L., Johansson, J., Kalish, J.: The structure of schools of giant bluefin tuna in Cape Cod Bay. Environ. Biol. Fish. 9(3–4), 253–262 (1983)

    Google Scholar 

  23. Upadhyay, R.K., Iyengar, S.R.: Introduction to Mathematical Modeling and Chaotic Dynamics. Chapman and Hall/CRC, London (2013)

    MATH  Google Scholar 

  24. Hsu, S.-B., Hwang, T.-W., Kuang, Y.: Global dynamics of a predator–prey model with Hassell–Varley type functional response. Discrete Contin. Dyn. Syst. B 10(4), 857–871 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Liu, X., Lou, Y.: Global dynamics of a predator–prey model. J. Math. Anal. Appl. 371(1), 323–340 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Pathak, S., Maiti, A., Samanta, G.: Rich dynamics of a food chain model with Hassell–Varley type functional responses. Appl. Math. Comput. 208(2), 303–317 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, Y., Gao, S., Fan, K., Wang, Q.: Asymptotic behavior of a non-autonomous predator–prey model with Hassell–Varley type functional response and random perturbation. J. Appl. Math. Comput. 49(1–2), 573–594 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, Y., Gao, S., Fan, K.: On the dynamics of a nonautonomous predator–prey model with Hassell–Varley type functional response. Abstr. Appl. Anal. 2014, 864678 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Wang, K., Zhu, Y.: Permanence and global asymptotic stability of a delayed predator–prey model with Hassell–Varley type functional response. Bull. Iran. Math. Soc. 37(3), 197–215 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Chen, D., Wang, D.: Almost periodic dynamics of delayed prey–predator model with discontinuous harvesting policies and Hassell–Varley type functional response. Int. J. Biomath. 11(07), 1850083 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Xu, C., Li, P.: Oscillations for a delayed predator–prey model with Hassell–Varley-type functional response. C. R. Biol. 338(4), 227–240 (2015)

    Google Scholar 

  32. Luo, D., Wang, D.: Impact of discontinuous harvesting policies on prey–predator system with Hassell–Varley-type functional response. Int. J. Biomath. 10(04), 1750048 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Gao, J., Yang, F., Zhao, M.: Spiral pattern formation in a Hassell–Varley predator–prey model. In: 2009 International Conference on Information Engineering and Computer Science. IEEE, pp. 1–4 (2009)

  34. Ko, W., Ryu, K.: Positive periodic solutions of a Hassell–Varley type predator–prey system. Indian J. Pure Appl. Math. 44(6), 865–882 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Kim, H.K., Baek, H.: The dynamical complexity of a predator–prey system with Hassell–Varley functional response and impulsive effect. Math. Comput. Simul. 94, 1–14 (2013)

    MathSciNet  Google Scholar 

  36. Liu, X.: Impulsive periodic oscillation for a predator–prey model with Hassell–Varley–Holling functional response. Appl. Math. Model. 38(4), 1482–1494 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Wu, R., Li, L.: Permanence and global attractivity of discrete predator–prey system with Hassell–Varley type functional response. Discrete Dyn. Nat. Soc. 2009, Article ID 323065 (2009)

  38. Xie, X., Zhang, C., Chen, X., Chen, J.: Almost periodic sequence solution of a discrete Hassell–Varley predator–prey system with feedback control. Appl. Math. Comput. 268, 35–51 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Rao, F., Jiang, S., Li, Y., Liu, H.: Stochastic analysis of a Hassell–Varley type predation model. Abstr. Appl. Anal. 2013, 738342 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Du, B., Hu, M., Lian, X.: Dynamical behavior for a stochastic predator–prey model with HV type functional response. Bull. Malay. Math. Sci. Soc. 40(1), 487–503 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999)

    MATH  Google Scholar 

  42. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, Cham (2003)

    MATH  Google Scholar 

  43. Nath, B., Kumari, N., Kumar, V., Das, K.P.: Refugia and allee effect in prey species stabilize chaos in a tri-trophic food chain model. Differ. Equ. Dyn. Syst. 1–27 (2019)

  44. Chen, F.: On a nonlinear nonautonomous predator–prey model with diffusion and distributed delay. J. Comput. Appl. Math. 180(1), 33–49 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Freedman, H., Ruan, S.G.: Uniform persistence in functional differential equations. J. Differ. Equ. 115(1), 173–192 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first author (VK) is supported by the Council of Scientific & Industrial Research (CSIR) under Grant Number: 09/1058(0006)/2016-EMR-I. The research of second author (NK) is supported by Science and Engineering Research Board (SERB), under two separate grants with Grant Numbers MTR/2018/000727 and EMR/2017/005203. The authors would also like to thank the Editor and anonymous reviewers whose constructive comments have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitu Kumari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kumari, N. Stability and Bifurcation Analysis of Hassell–Varley Prey–Predator System with Fear Effect. Int. J. Appl. Comput. Math 6, 150 (2020). https://doi.org/10.1007/s40819-020-00899-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00899-y

Keywords

Navigation