Skip to main content

Advertisement

Log in

Spatiotemporal Dynamics of a Generalized HBV Infection Model with Capsids and Adaptive Immunity

  • Original paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this study, we propose and analyze a new mathematical model formulated by partial differential equations in order to better understand the mechanisms and dynamics of hepatitis B virus (HBV) infection in vivo. The proposed model incorporates the intracellular HBV DNA-containing capsids, spatial diffusion in both capsids and viruses, and adaptive immune response exerted by cytotoxic T lymphocytes and antibodies. Further, the infection process is modeled by a general incidence function that includes many cases existing in the literature. We first show the global existence, uniqueness, positivity and boundedness of solutions. The global stability and instability of equilibria are established by means of Lyapunov’s direct and indirect methods. Finally, numerical simulations are presented to illustrate the dynamical behaviors of the model and to support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manna, K., Chakrabarty, S.P.: Chronic hepatitis B infection and HBV DNA-containing capsids: modeling and analysis. Commun. Nonlinear Sci. Numer. Simul. 22, 383–395 (2015)

    Article  MathSciNet  Google Scholar 

  2. Murray, J.M., Purcell, R.H., Wieland, S.F.: The half-life of hepatitis B virions. Hepatology 44, 1117–1121 (2006)

    Article  Google Scholar 

  3. Manna, K., Chakrabarty, S.P.: Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids. Comput. Appl. Math. 36, 525–536 (2017)

    Article  MathSciNet  Google Scholar 

  4. Guo, T., Liu, H., Xu, C., Yan, F.: Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete Contin. Dyn. Syst. B 23(10), 4223–4242 (2018)

    Article  MathSciNet  Google Scholar 

  5. Manna, K.: Dynamics of a diffusion-driven HBV infection model with capsids and time delay. Int. J. Biomath. 10(5), 1750062 (2017). (18 pages)

    Article  MathSciNet  Google Scholar 

  6. Geng, Y., Xu, J., Hou, J.: Discretization and dynamic consistency of a delayed and diffusive viral infection model. Appl. Math. Comput. 316, 282–295 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Manna, K.: Dynamics of a delayed diffusive HBV infection model with capsids and CTL immune response. Int. J. Appl. Comput. Math. 4(5), 116 (2018)

    Article  MathSciNet  Google Scholar 

  8. Xu, J., Geng, Y.: Dynamic consistent NSFD scheme for a delayed viral infection model with immune response and nonlinear incidence. Discrete Dyn. Nat. Soc. 2017, 1–12 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Manna, K.: Global properties of a HBV infection model with HBV DNA-containing capsids and CTL immune response. Int. J. Appl. Comput. Math. 3, 2323–2338 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Perelson, A.S.: Modeling the mechanisms of acute hepatitis B virus infection. J. Theor. Biol. 247, 23–35 (2007)

    Article  MathSciNet  Google Scholar 

  11. Vierling, J.M.: The immunology of hepatitis B. Clin. Liver Dis. 11, 727–759 (2007)

    Article  Google Scholar 

  12. Bertoletti, A., Gehring, A.J.: The immune response during hepatitis B virus infection. J. Gen. Virol. 87, 1439–1449 (2006)

    Article  Google Scholar 

  13. Hattaf, K., Yousfi, N., Tridane, A.: Mathematical analysis of a virus dynamics model with general incidence rate and cure rate. Nonlinear Anal. Real World Appl. 13, 1866–1872 (2012)

    Article  MathSciNet  Google Scholar 

  14. Hattaf, K., Yousfi, N.: A generalized HBV model with diffusion and two delays. Comput. Math. Appl. 69, 31–40 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hattaf, K., Yousfi, N.: A numerical method for a delayed viral infection model with general incidence rate. J. King Saud Univ. Sci. 28(4), 368–374 (2016)

    Article  Google Scholar 

  16. Wang, X.-Y., Hattaf, K., Huo, H.-F., Xiang, H.: Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. J. Ind. Manag. Optim. 12(4), 1267–1285 (2016)

    Article  MathSciNet  Google Scholar 

  17. Xu, R., Ma, Z.E.: An HBV model with diffusion and time delay. J. Theoret. Biol. 257, 499–509 (2009)

    Article  MathSciNet  Google Scholar 

  18. Chan Chí, N., Ávila Vales, E., García Almeida, G.: Analysis of a HBV model with diffusion and time delay. J. Appl. Math. 2012, 1–25 (2012)

    Article  MathSciNet  Google Scholar 

  19. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching effciency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  20. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56(4), 881–892 (1975)

    Article  Google Scholar 

  21. Yang, Y., Xu, Y.: Global stability of a diffusive and delayed virus dynamics model with Beddington-DeAngelis incidence function and CTL immune response. Comput. Math. Appl. 71, 922–930 (2016)

    Article  MathSciNet  Google Scholar 

  22. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8, 211–221 (1989)

    Article  Google Scholar 

  23. Kang, C., Miao, H., Chen, X., Xu, J., Huang, D.: Global stability of a diffusive and delayed virus dynamics model with Crowle-Martin incidence function and CTL immune response. Adv. Differ. Equ. (2017). https://doi.org/10.1186/s13662-017-1332-x

    Article  MATH  Google Scholar 

  24. Hattaf, K., Yousfi, N.: A class of delayed viral infection models with general incidence rate and adaptive immune response. Int. J. Dyn. Control 4, 254–265 (2016)

    Article  MathSciNet  Google Scholar 

  25. Riad, D., Hattaf, K., Yousfi, N.: Dynamics of capital-labour model with Hattaf-Yousfi functional response. Br. J. Math. Comput. Sci. 18(5), 1–7 (2016)

    Article  Google Scholar 

  26. Mahrouf, M., Hattaf, K., Yousfi, N.: Dynamics of a stochastic viral infection model with immune response. Math. Model. Nat. Phenom. 12(5), 15–32 (2017)

    Article  MathSciNet  Google Scholar 

  27. Travis, C.C., Webb, G.F.: Existence and stability for partial functional differential equations. Trans. Am. Math. Soc. 200, 395–418 (1974)

    Article  MathSciNet  Google Scholar 

  28. Fitzgibbon, W.E.: Semilinear functional differential equations in Banach space. J. Differ. Equ. 29, 1–14 (1978)

    Article  MathSciNet  Google Scholar 

  29. Martin, R.H., Smith, H.L.: Abstract functional-differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Martin, R.H., Smith, H.L.: Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence. J. reine Angew. Math. 413, 1–35 (1991)

    MathSciNet  MATH  Google Scholar 

  31. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  Google Scholar 

  32. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  33. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, New York (1981)

    Book  Google Scholar 

  34. Miao, H., Teng, Z., Abdurahman, X., Li, Z.: Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response. Comput. Appl. Math. 37, 3780–3805 (2018)

    Article  MathSciNet  Google Scholar 

  35. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  Google Scholar 

  36. Zhuo, X.: Analysis of a HBV infection model with non-cytolytic cure process. In: IEEE 6th International Conference on Systems Biology, pp. 148–151 (2012)

  37. Sun, Q., Min, L.: Dynamics analysis and simulation of a modified HIV infection model with a saturated infection rate. Comput. Math. Methods Med. 2014, Article ID 145162 (2014)

  38. Jajarmi, A., Baleanu, D.: A new fractional analysis on the interaction of HIV with CD\(4^{+}\) T-cells. Chaos Solitons Fractals 113, 221–229 (2018)

    Article  MathSciNet  Google Scholar 

  39. Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.G.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 69, 119–133 (2019)

    Article  MathSciNet  Google Scholar 

  40. Sajjadi, S.S., Pariz, N., Karimpour, A., Jajarmi, A.: An off-line NMPC strategy for continuous-time nonlinear systems using an extended modal series method. Nonlinear Dyn. 78(4), 2651–2674 (2014)

    Article  MathSciNet  Google Scholar 

  41. Hattaf, K., Lashari, A.A., El Boukari, B., Yousfi, N.: Effect of discretization on dynamical behavior in an epidemiological model. Differ. Equ. Dyn. Syst. 23(4), 403–413 (2015)

    Article  MathSciNet  Google Scholar 

  42. Manna, K.: A non-standard finite difference scheme for a diffusive HBV infection model with capsids and time delay. J. Differ. Equ. Appl. 23, 1901–1911 (2017)

    Article  MathSciNet  Google Scholar 

  43. Hattaf, K., Yousfi, N.: A numerical method for delayed partial differential equations describing infectious diseases. Comput. Math. Appl. 72, 2741–2750 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors convey their gratitude to the learned reviewer for his/her valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Hattaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, K., Hattaf, K. Spatiotemporal Dynamics of a Generalized HBV Infection Model with Capsids and Adaptive Immunity. Int. J. Appl. Comput. Math 5, 65 (2019). https://doi.org/10.1007/s40819-019-0651-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0651-x

Keywords

Navigation