Skip to main content
Log in

Vibration and Stability Analysis of Functionally Graded Skew Plate Using Higher Order Shear Deformation Theory

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the vibration and buckling analysis of skew functionally graded material (FGM) plates. A finite element mathematical model is developed based on higher order shear deformation theory. The model is based on an eight noded isoparametric element with seven degrees of freedom per node. The material properties are graded along thickness direction obeying simple power-law distribution. The general displacement equation provides \(\hbox {C}^{0}\) continuity. The transverse shear strain undergoes parabolic variation through the thickness of the plate. Hence, there is no requirement of a shear correction factor in this theory. The governing equation for the skew FGM plate is obtained using Hamilton’s principle. The obtained results are compared with the published results to determine the accuracy of the method. The effect of various parameters like aspect ratio, side-thickness ratio, volume fraction index, boundary conditions and skew angle on the natural frequencies and buckling loads has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kumar, A., Panda, S.K., Kumar, R.: Buckling behaviour of laminated composite skew plates with various boundary conditions subjected to linearly varying in-plane edge loading. Int. J. Mech. Sci. 100, 136–144 (2015)

    Article  Google Scholar 

  2. Wang, X., Wang, Y., Yuan, Z.: Accurate vibration analysis of skew plates by the new version of the differential quadrature method. Appl. Math. Model. 38, 926–937 (2014)

    Article  MathSciNet  Google Scholar 

  3. Joodaky, A., Joodaky, I.: A semi-analytical study on static behavior of thin skew plates on Winkler and Pasternak foundations. Int. J. Mech. Sci. 100, 322–327 (2015)

    Article  Google Scholar 

  4. Bardell, N.S.: Free vibration analysis of a flat plate using the hierarchical finite element method. J. Sound Vib. 151, 263–289 (1991)

    Article  Google Scholar 

  5. Asemi, K., Salami, S., Slaehi, M., Sadighi, M.: Dynamic and static analysis of FGM skew plates with 3D elasticity based graded finite element modeling. Lat. Am. J. Solids Struct. 11, 504–533 (2014)

    Article  Google Scholar 

  6. Butalia, T.S., Kant, T., Dixit, V.D.: Performance of heterosis element for bending of skew rhombic plates. Comput. Struct. 34, 23–49 (1990)

    Article  MATH  Google Scholar 

  7. Duan, M., Mahendran, M.: Large deflection analyses of skew plates using hybrid/mixed finite element method. Comput. Struct. 81, 1415–1424 (2003)

    Article  Google Scholar 

  8. Liew, K.M., Han, J.-B.: Bending analysis of simply supported shear deformable skew plates. J. Eng. Mech. 123, 214–221 (1997)

    Article  Google Scholar 

  9. Chen, C.C., Kitipornchai, S., Lim, C.W., Liew, K.M.: Free vibration of symmetrically laminated thick-perforated plates. J. Sound Vib. 230, 111–132 (2000)

    Article  MATH  Google Scholar 

  10. Zhou, L., Zheng, W.X.X.: Vibration of skew plates by the MLS-Ritz method. Int. J. Mech. Sci. 50, 1133–1141 (2008)

    Article  MATH  Google Scholar 

  11. Mizusawa, T., Kajita, T., Naruoka, M.: Vibration of skew plates by using B-spline functions. J. Sound Vib. 62, 301–308 (1979)

    Article  MATH  Google Scholar 

  12. Mizusawa, T., Kajita, T., Naruoka, M.: Analysis of skew plate problems with various constraints. J. Sound Vib. 73, 575–584 (1980)

    Article  MATH  Google Scholar 

  13. Singh, B., Chakraverty, S.: Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables. J. Sound Vib. 173, 157–178 (1994)

    Article  MATH  Google Scholar 

  14. Liew, K.M., Xiang, Y., Kitipornchai, S., Wang, C.W.: Vibration of thick skew plates based on mindlin shear deformation plate theory. J. Sound Vib. 168, 39–69 (1993)

    Article  MATH  Google Scholar 

  15. Malekzadeh, P., Karami, G.: Differential quadrature nonlinear analysis of skew composite plates based on FSDT. Eng. Struct. 28, 1307–1318 (2006)

    Article  Google Scholar 

  16. Muhammad, T., Singh, A.V.: A p-type solution for the bending of rectangular, circular, elliptic and skew plates. Int. J. Solids Struct. 41, 3977–3997 (2004)

    Article  MATH  Google Scholar 

  17. Nair, P.S., Durvasula, S.: Vibration of skew plates. J. Sound Vib. 26, 1–19 (1973)

    Article  MATH  Google Scholar 

  18. Bishop, R.E.D.: The Mechanics of Vibration. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  19. Zhao, X., Lee, Y.Y., Liew, K.M.: Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. J. Sound Vib. 319(3–5), 918–939 (2009)

    Article  Google Scholar 

  20. Xiang, Y., Wang, C.M., Kitipornchai, S.: Buckling of skew mindlin plates subjected to in-plane shear loadings. Int. J. Mech. Sci. 37, 1089–1101 (1995)

    Article  MATH  Google Scholar 

  21. Li, Q., Iu, V.P., Kou, K.P.: Three-dimensional vibration analysis of functionally graded material plates in thermal environment. J. Sound Vib. 324, 733–750 (2009)

    Article  Google Scholar 

  22. Chen, P., Peng, J., Yu, L., Yang, Y.: The interfacial analysis of a film bonded to a finite thickness graded substrate. Int. J. Solids Struct. 120, 57–66 (2017)

    Article  Google Scholar 

  23. Chen, P., Chen, S., Peng, J.: Interface behaviour of a thin-film bonded to a graded layer coated elastic half-plane. Int. J. Mech. Sci. 115–116, 489–500 (2016)

    Article  Google Scholar 

  24. Petyt, M.: Introduction to finite element vibration analysis, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  25. Bhavikatti, S.S.: Finite element analysis. New age international (P) Limited, Publishers, New Delhi (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parida.

Appendix

Appendix

A.1

The strain-displacement matrix [B]

$$\begin{aligned} \left[ B \right] _{1,1}= & {} N_{i,x}, \quad \left[ B \right] _{2,2} =N_{i,y}, \quad \left[ B \right] _{3,1} =N_{i,y}, \quad \left[ B \right] _{3,2} =N_{i,x}, \quad \left[ B \right] _{4,7} =N_{i,x}, \quad \left[ B \right] _{5,6} =N_{i,y},\\ \left[ B \right] _{6,6}= & {} N_{i,x}, \quad \left[ B \right] _{6,7} =N_{i,y}, \quad \left[ B \right] _{7,4} =N_{i,x}, \quad \left[ B \right] _{7,7} =N_{i,x}, \quad \left[ B \right] _{8,5} =N_{i,y} \hbox {, }\left[ B \right] _{8,6} =N_{i,y},\\ \left[ B \right] _{9,4}= & {} N_{i,y}, \quad \left[ B \right] _{9,5} =N_{i,x}, \quad \left[ B \right] _{9,6} =N_{i,x}, \quad \left[ B \right] _{9,7} =N_{i,y}, \quad \left[ B \right] _{10,3} =N_{i,x}, \quad \left[ B \right] _{10,7} =N_i,\\ \left[ B \right] _{11,3}= & {} N_{i,y}, \quad \left[ B \right] _{11,6} =N_i, \quad \left[ B \right] _{12,4} =N_i, \quad \left[ B \right] _{12,4} =N_i, \quad \left[ B \right] _{13,5} =N_i, \quad \left[ B \right] _{13,6} =N_i \end{aligned}$$

A.2

The inertia matrix [I]

$$\begin{aligned} {[I]}_{1,1}= & {} I_0, \quad [I]_{2,2} =I_0, \quad [I]_{3,3} =I_0, \quad [I]_{4,4} =c_1^2 \times I_6, \quad [I]_{4,7}\\= & {} -c_1 \times \left( {I_4 -c_1 I_6 } \right) , \\ {[I]}_{5,5}= & {} c_1^2 \times I_6, \quad [I]_{5,6} =c_1 \times \left( {I_4 -c_1 I_6 } \right) , \quad [I]_{6,5} =c_1 \times \left( {I_4 -c_1 I_6 } \right) , \\ \quad [I]_{6,6}= & {} I_2 -\,2c_1 J_4 +c_1^2 I_6, \\ {[I]}_{7,4}= & {} -c_1 \times \left( {I_4 -c_1 I_6 } \right) , \quad [I]_{7,7} =I_2 -\,2c_1 J_4 +c_1^2 I_6 \\ \hbox {where, }I_i= & {} \int \limits _{-h/2}^{h/2} {\rho z^{i}dz} \quad (i=0,2,4,6), \quad c_1 =\frac{4}{3h^{2}} \end{aligned}$$

Shape function Matrix \(\left[ N \right] \)

$$\begin{aligned} \left[ N \right] _{1,1} =\left[ N \right] _{2,2} =\left[ N \right] _{3,3} =\left[ N \right] _{4,4} =\left[ N \right] _{5,5} =\left[ N \right] _{6,6} =\left[ N \right] _{7,7} =N_i \end{aligned}$$

where, \(N_i \) is the shape function at each node \((i=1,2,3,4,5,6,7,8)\).

A.3

$$\begin{aligned} \left[ G \right] _{1,1}= & {} N_{i,x} \quad \left[ G \right] _{2,1} =N_{i,y} \quad \left[ G \right] _{3,2} =N_{i,x} \quad \left[ G \right] _{4,2} =N_{i,y} \quad \left[ G \right] _{5,3} =N_{i,x} \quad \left[ G \right] _{6,3} =N_{i,y}\\ \left[ G \right] _{7,4}= & {} N_{i,x} \quad \left[ G \right] _{8,4} =N_{i,y} \quad \left[ G \right] _{9,5} =N_{i,x} \quad \left[ G \right] _{10.5} =N_{i,y} \quad \left[ G \right] _{11,6} =N_{i,x} \quad \left[ G \right] _{12,6} =N_{i,y}\\ \left[ G \right] _{13,7}= & {} N_{i,x} \quad \left[ G \right] _{14,7} =N_{i,y} \quad \left[ G \right] _{15,4} =N_i \quad \left[ G \right] _{16,5} =N_i \quad \left[ G \right] _{17,6} =N_i \quad \left[ G \right] _{18,7} =N_i \end{aligned}$$

The stress matrix [S]

$$\begin{aligned} \left[ S \right] _{1,1}= & {} N_x, \left[ S \right] _{1,2} =N_{xy} ; \quad \left[ S \right] _{1,7} =-c_1 P_x ; \quad \left[ S \right] _{1,8} =-c_1 P_{xy} ; \quad \left[ S \right] _{1,13}\\= & {} M_x -c_1 P_x ; \quad \left[ S \right] _{1,14} =M_{xy} -c_1 P_{xy} ; \\ \left[ S \right] _{1,15}= & {} \quad -c_2 R_x; \left[ S \right] _{1,18} =-c_1 S_{x1} ; \quad \left[ S \right] _{2,1} =N_{xy} ; \quad \left[ S \right] _{2,2} =N_y ; \quad \left[ S \right] _{2,7}\\= & {} -c_1 P_y ; \quad \left[ S \right] _{2,8} =-c_1 P_y ; \quad \\ \left[ S \right] _{2,13}= & {} M_{xy} -c_1 P_{xy} ; \quad \left[ S \right] _{2,14} =M_y -c_1 P_y ; \quad \left[ S \right] _{2,15} =-c_2 R_y ; \quad \left[ S \right] _{2,18}\\= & {} Q_y -c_2 R_y ; \quad \left[ S \right] _{3,3}=N_x ;\left[ S \right] _{3,4} =N_{xy} ; \\ \left[ S \right] _{3,9}= & {} -c_1 P_x ; \quad \left[ S \right] _{3,10} =-c_1 P_{xy} ; \quad \left[ S \right] _{3,11} =-M_x -c_1 P_x ; \quad \left[ S \right] _{3,12}\\= & {} -M_{xy} +c_1 P_{xy} ; \quad \left[ S \right] _{3,16} =-c_2 R_x ; \quad \\ \left[ S \right] _{3,17}= & {} -Q_x +c_2 R_x ; \quad \left[ S \right] _{4,3} =N_{xy} ; \quad \left[ S \right] _{4,4} =N_y ; \quad \left[ S \right] _{4,9} =-c_1 P_{xy} ; \quad \left[ S \right] _{4,10}\\= & {} -c_1 P_y ; \quad \left[ S \right] _{4,11} =-M_{xy} +c_1 P_{xy} ; \\ \left[ S \right] _{4,12}= & {} -M_y +c_1 P_y ; \quad \left[ S \right] _{4,16} =-c_2 R_y ; \quad \left[ S \right] _{4,17} =-Q_y +c_2 R_y ; \quad \left[ S \right] _{5,5}\\= & {} N_x ; \quad \left[ S \right] _{5,6}=N_{xy} ; \quad \left[ S \right] _{6,5} =N_{xy} ; \\ \left[ S \right] _{6,6}= & {} N_y ; \quad \left[ S \right] _{7,1} =-c_1 P_x ; \quad \left[ S \right] _{7,2} =-c_1 P_{xy} ; \quad \left[ S \right] _{7,7} =c_1^2 M_{x1} ; \quad \left[ S \right] _{7,8}\\= & {} c_1^2 M_{xy1} ; \quad \left[ S \right] _{7,13} =c_1^2 M_{x1} -c_1 N_{x1} ; \\ \left[ S \right] _{7,14}= & {} c_1^2 M_{xy1} -c_1 N_{xy1} ; \quad \left[ S \right] _{7,18} =-c_1 S_{x1} ; \quad \left[ S \right] _{8,1} =-c_1 P_{xy} ; \quad \left[ S \right] _{8,2}\\= & {} -c_1 P_y ; \quad \left[ S \right] _{8,7}=c_1^2 M_{xy1} ; \quad \left[ S \right] _{8,8} =c_1^2 M_{y1} ; \\ \left[ S \right] _{8,13}= & {} c_1^2 M_{xy1} -c_1 N_{xy1} ; \quad \left[ S \right] _{8,14} =c_1^2 M_{y1} -c_1 N_{y1} ; \quad \left[ S \right] _{8,18} =-c_1 S_{y1} ; \quad \left[ S \right] _{9,3}\\= & {} -c_1 P_x ; \quad \left[ S \right] _{9,4} =-c_1 P_{xy} ; \\ \left[ S \right] _{9,9}= & {} c_1^2 M_{x1} ; \quad \left[ S \right] _{9,10} =c_1^2 M_{xy1} ; \quad \left[ S \right] _{9,11} =-c_1^2 M_{x1} +c_1 N_{x1} ; \quad \left[ S \right] _{9,12}\\= & {} -c_1^2 M_{xy1} +c_1 N_{xy1} ; \quad \left[ S \right] _{9,17} =c_1 S_{x1} ; \\ \left[ S \right] _{10,3}= & {} -c_1 P_{xy} ; \quad \left[ S \right] _{10,4} =-c_1 P_y ; \quad \left[ S \right] _{10,9} =c_1^2 M_{xy1} ; \quad \left[ S \right] _{10,10}\\= & {} c_1^2 M_{y1} ; \quad \left[ S \right] _{10,11}=-c_1^2 M_{xy1} +c_1 N_{xy1} ; \\ \left[ S \right] _{10,12}= & {} -c_1^2 M_{y1} +c_1 N_{y1} ; \quad \left[ S \right] _{10,17} =c_1 S_{y1} ; \quad \left[ S \right] _{11,3}\\= & {} -M_x -c_1 P_x ; \quad \left[ S \right] _{11,4} =M_{xy} -c_1 P_{xy} ; \\ \left[ S \right] _{11,9}= & {} -c_1^2 M_{x1} +c_1 N_{x1} ; \quad \left[ S \right] _{11,10} =-c_1^2 M_{xy1} +c_1 N_{xy1} ; \quad \left[ S \right] _{11,11}\\= & {} L_x +c_1^2 M_{x1} -\,2c_1 N_{x1} ; \\ \left[ S \right] _{11,12}= & {} L_{xy} +c_1^2 M_{xy1} -\,2c_1 N_{xy1} ; \quad \left[ S \right] _{11,16}\\= & {} c_2 S_{x1} ; \quad \left[ S \right] _{12,3} =-M_{xy} +c_1 P_{xy} ; \\ \left[ S \right] _{12,4}= & {} -M_y +c_1 P_y ; \quad \left[ S \right] _{12,9} =-S_{7,14} =-c_1^2 M_{xy1} +c_1 N_{xy1} ; \quad \left[ S \right] _{12,10}\\= & {} -c_1^2 M_{y1} +c_1 N_{y1} ; \\ \left[ S \right] _{12,11}= & {} L_{xy} +c_1^2 M_{xy1} -\,2c_1 N_{xy1} ; \quad \left[ S \right] _{12,12} =L_y +c_1^2 M_{y1} -\,2c_1 N_{y1} ; \quad \left[ S \right] _{12,16}\\= & {} -c_2 S_{y1} ; \\ \left[ S \right] _{13,1}= & {} M_x -c_1 P_x ; \quad \left[ S \right] _{13,2} =M_{xy} -c_1 P_{xy} ; \quad \left[ S \right] _{13,7}\\= & {} c_1^2 M_{x1} -c_1 N_{x1} ; \quad \left[ S \right] _{13,8} =c_1^2 M_{xy1} -c_1 N_{xy1} ; \\ \left[ S \right] _{13,13}= & {} L_x +c_1^2 M_{x1} -\,2c_1 N_{x1} ; \quad \left[ S \right] _{13,14}\\= & {} L_{xy} +c_1^2 M_{xy1} -\,2c_1 N_{xy1} ; \quad \left[ S \right] _{13,15} =c_2 S_{x1} ; \\ \left[ S \right] _{13,18}= & {} S_x -c_1 S_{x1} -c_2 S_{x1} ; \quad \left[ S \right] _{14,1} =M_{xy} -c_1 P_{xy} ; \quad \left[ S \right] _{14,2}\\= & {} M_y -c_1 P_y ; \quad \left[ S \right] _{14,7} =c_1^2 M_{xy1} -c_1 N_{xy1} ; \\ \left[ S \right] _{14,8}= & {} S_{8,14} ; \quad \left[ S \right] _{14,13} =L_{xy} +c_1^2 M_{xy1} -\,2c_1 N_{xy1} ; \quad \left[ S \right] _{14,14}\\= & {} L_y +c_1^2 M_{y1} -\,2c_1 N_{y1} ; \quad \left[ S \right] _{14,15} =-c_2 S_{y1} ; \\ \left[ S \right] _{14,18}= & {} S_y -c_1 S_{y1} -c_2 S_{y1} ; \quad \left[ S \right] _{15,1} =-c_2 R_x ; \quad \left[ S \right] _{15,2} =-c_2 R_y ; \quad \left[ S \right] _{15,13}\\= & {} c_2 S_{x1} ; \quad \left[ S \right] _{15,14} =-c_2 S_{y1} ; \\ \left[ S \right] _{16,3}= & {} -c_2 R_x ; \quad \left[ S \right] _{16,4} =-c_2 R_y ; \quad \left[ S \right] _{16,11}\\= & {} c_2 S_{x1} ; \quad \left[ S \right] _{16,12} =-c_2 S_{y1} ; \quad \left[ S \right] _{17,3} =-Q_x +c_2 R_x ; \\ \left[ S \right] _{17,4}= & {} -Q_y +c_2 R_y ; \quad \left[ S \right] _{17,9} =c_1 S_{x1} ; \quad \left[ S \right] _{17,10}\\= & {} c_1 S_{y1} ; \quad \left[ S \right] _{17,11} =S_x -c_1 S_{x1} -c_2 S_{x1} ; \\ \left[ S \right] _{17,12}= & {} S_y -c_1 S_{y1} -c_2 S_{y1} ; \quad \left[ S \right] _{18,1} =Q_x -c_2 R_x ; \quad \left[ S \right] _{18,2}\\= & {} Q_y -c_2 R_y ; \quad \left[ S \right] _{18,7}=-c_1 S_{x1} ; \quad \left[ S \right] _{18,8} =-c_1 S_{y1} ; \\ \left[ S \right] _{18,13}= & {} S_x -c_1 S_{x1} -c_2 S_{x1} ; \quad \left[ S \right] _{18,14}\\= & {} S_y -c_1 S_{y1} -c_2 S_{y1} \end{aligned}$$

where,

$$\begin{aligned} \begin{array}{l} \left[ {{\begin{array}{cccccc} {N_x }&{} \quad {M_x }&{} \quad {L_x }&{} \quad {P_x }&{} \quad {N_{x1} }&{} \quad {M_{x1} } \\ {N_y }&{} \quad {M_y }&{} \quad {L_y }&{} \quad {P_y }&{} \quad {N_{y1} }&{} \quad {M_{y1} } \\ {N_{xy} }&{} \quad {M_{xy} }&{} \quad {L_{xy} }&{} \quad {P_{xy} }&{} \quad {N_{xy1} }&{} \quad {M_{xy1} } \\ \end{array} }} \right] =\displaystyle \int \limits _{-h/2}^{h/2} {\left\{ {{\begin{array}{l} {\sigma _x } \\ {\sigma _y } \\ {\sigma _{xy} } \\ \end{array} }} \right\} } \left[ {1,z,z^{2},z^{3},z^{4},z^{5}} \right] dz \\ \left[ {{\begin{array}{ccccc} {Q_x }&{} \quad {S_x }&{} \quad {R_x }&{} \quad {S_{x1} }&{} \quad {P_{x1} } \\ {Q_y }&{} \quad {S_y }&{} \quad {R_y }&{} \quad {S_{y1} }&{} \quad {P_{y1} } \\ \end{array} }} \right] =\displaystyle \int \limits _{-h/2}^{h/2} {\left\{ {{\begin{array}{l} {\tau _{xz} } \\ {\tau _{yz} } \\ \end{array} }} \right\} \left[ {1,z,z^{2},z^{3},z^{5}} \right] dz} \\ \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, S., Mohanty, S.C. Vibration and Stability Analysis of Functionally Graded Skew Plate Using Higher Order Shear Deformation Theory. Int. J. Appl. Comput. Math 4, 22 (2018). https://doi.org/10.1007/s40819-017-0440-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-017-0440-3

Keywords

Navigation