Skip to main content
Log in

Computational Hemodynamic Analysis of Flow Through Flexible Permeable Stenotic Tapered Artery

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Investigation of couple stress fluid flow through \(\omega \)-shaped stenosed artery addresses many issues of blood flow in particular and circulatory system in general. In this model, physics of the flexible nature of the arterial tapered wall has been incorporated. The effects of pulsatile pressure gradient and stratification in both dynamic viscosity and couple stress viscosity are considered. To make the model more effective and realistic permeable stenosis, slip velocity and vanishing couple stresses at the arterial wall are also incorporated. The numerical solution of the transformed governing equations are obtained by using the finite difference method. The velocity profiles, the volumetric flow rate, the resistance to the flow and the wall shear stress are obtained numerically for various values of fluid and geometric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Akbar, N.S., Nadeem, S., Ali, M.: Jeffrey fluid model for blood flow through a tapered artery with a stenosis. J. Mech. Med. Biol. 11(03), 529–545 (2011)

    Article  Google Scholar 

  2. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(01), 197–207 (1967)

    Article  Google Scholar 

  3. Bennett, L.: Red cell slip at a wall in vitro. Science 24, http://refhub.elsevier.com/S0997-7546(14)00108-3/sbref20 (1967)

  4. Brunn, P.: The velocity slip of polar fluids. Rheologica Acta (1975). doi:10.1007/BF01515899

  5. Chakravarty, S., Mandal, P.K.: Two-dimensional blood flow through tapered arteries under stenotic conditions. Int. J. Non-Linear Mech. 35(5), 779–793 (2000)

    Article  MATH  Google Scholar 

  6. Chakravarty, S., Datta, A., Mandal, P.: Analysis of nonlinear blood flow in a stenosed flexible artery. Int. J. Eng. Sci. 33(12), 1821–1837 (1995)

    Article  MATH  Google Scholar 

  7. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1. Springer, Berlin (2010)

    MATH  Google Scholar 

  8. Fossum, E., Høieggen, A., Moan, A., Nordby, G., Velund, T.L., Kjeldsen, S.E.: Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors. Blood Press. 6(3), 161–165 (1997)

    Article  Google Scholar 

  9. Ismail, Z., Abdullah, I., Mustapha, N., Amin, N.: A power-law model of blood flow through a tapered overlapping stenosed artery. Appl. Math. Comput. 195(2), 669–680 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Kensey, K., Cho, Y.: Physical principles and circulation: hemodynamics. In: The Origin of Atherosclerosis: What Really Initiates the Inflammatory Process, pp. 33–50 (2007)

  11. Koenig, W., Sund, M., Filipiak, B., Döring, A., Löwel, H., Ernst, E.: Plasma viscosity and the risk of coronary heart disease results from the monica-augsburg cohort study, 1984–1992. Arterioscler. Thromb. Vasc. Biol. 18(5), 768–772 (1998)

    Article  Google Scholar 

  12. Layek, G., Mukhopadhyay, S., Gorla, R.S.R.: Unsteady viscous flow with variable viscosity in a vascular tube with an overlapping constriction. Int. J. Eng. Sci. 47(5), 649–659 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mann, F.C., Herrick, J., Essex, H.E., Baldes, E.J.: The effect on the blood flow of decreasing the lumen of a blood vessel. Surgery 4, 249–252 (1938)

    Google Scholar 

  14. Mekheimer, K.S., Kot, MaE: The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta. Mech. Sin. 24(6), 637–644 (2008). doi:10.1007/s10409-008-0185-7

    Article  MATH  MathSciNet  Google Scholar 

  15. Reddy, J.R., Srikanth, D., Murthy, S.K.: Mathematical modelling of time dependent flow of non-newtonian fluid through unsymmetric stenotic tapered artery: effects of catheter and slip velocity. Meccanica 51(1), 55–69 (2016). doi:10.1007/s11012-015-0201-5

    Article  MATH  MathSciNet  Google Scholar 

  16. Reddy, J.R., Srikanth, D., Murthy, S.K.: Mathematical modelling of pulsatile flow of blood through catheterized unsymmetric stenosed arteryeffects of tapering angle and slip velocity. Eur. J. Mech. B/Fluids 48, 236–244 (2014a). doi:10.1016/j.euromechflu.2014.07.001

    Article  MathSciNet  Google Scholar 

  17. Ramana Reddy, J.V., Srikanth, D.: The polar fluid model for blood flow through a tapered artery with overlapping stenosis: effects of catheter and velocity slip. Appl. Bionics Biomech. 2015, 174387-1–174387-12 (2015). doi:10.1155/2015/174387

  18. Reddy, J.V.R., Srikanth, D., Murthy, S.: Mathematical modelling of couple stresses on fluid flow in constricted tapered artery in presence of slip velocity-effects of catheter. Appl. Math. Mech. 35(8), 947–958 (2014b). doi:10.1007/s10483-014-1848-7

    Article  MATH  MathSciNet  Google Scholar 

  19. Shukla, G.S.J.B.: Peristaltic transport of a power-law fluid with variable consistency. J. Biomech. Eng. 104(3), 182–186 (1982). doi:10.1115/1.3138346

    Article  Google Scholar 

  20. Siouffi, M., Pelissier, R., Farahifar, D., Rieu, R.: The effect of unsteadiness on the flow through stenoses and bifurcations. J. Biomech. 17(5), 299–315 (1984). doi:10.1016/0021-9290(84)90025-3

    Article  Google Scholar 

  21. Sloop, G.D., Garber, D.W.: The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin. Sci. 92(5), 473–480 (1997)

    Article  Google Scholar 

  22. Solerte, S., Fioravanti, M.: Hemodynamic alterations in long-term insulin-dependent diabetic patients with overt nephropathy: role of blood hyperviscosity and plasma protein changes. Clin. Nephrol. 28(3), 138–143 (1987)

    Google Scholar 

  23. Srinivasacharya, D., Srikanth, D.: Effect of couple stresses on the flow in a constricted annulus. Arch. Appl. Mech. 78(4), 251–257 (2008a). doi:10.1007/s00419-007-0157-6

    Article  MATH  Google Scholar 

  24. Srinivasacharya, D., Srikanth, D.: Effect of couple stresses on the pulsatile flow through a constricted annulus. C.R. Mech. 336(11), 820–827 (2008b)

    Article  MATH  Google Scholar 

  25. Srinivasacharya, D., Srikanth, D.: Flow of micropolar fluid through catheterized artery: a mathematical model. Int. J. Biomath. 05(02), 1250,019 (2012a). doi:10.1142/S1793524511001611

    Article  MATH  MathSciNet  Google Scholar 

  26. Srinivasacharya, D., Srikanth, D.: Flow of micropolar fluid through catheterized arterya mathematical model. Int. J. Biomath. 5(02), 1250,019 (2012b)

    Article  MATH  Google Scholar 

  27. Srivastav, V., Vishnoi, R., Mishra, S., Sinha, P.: Blood flow through a composite stenosis in catheterized arteries. Sci. Tech. 5, 55–64 (2010)

    Google Scholar 

  28. Srivastava, L.: Flow of couple stress fluid through stenotic blood vessels. J. Biomech. 18(7), 479–485 (1985)

    Article  Google Scholar 

  29. Stokes, V.K.: Couple stresses in fluids. Phys. Fluids 9(9), 1709–1715 (1966). doi:10.1063/1.1761925

    Article  Google Scholar 

  30. Taylor, T.W., Yamaguchi, T.: Three-dimensional simulation of blood flow in an abdominal aortic aneurysmsteady and unsteady flow cases. J. Biomech. Eng. 116(1), 89–97 (1994)

    Article  Google Scholar 

  31. Tu, C., Deville, M.: Pulsatile flow of non-newtonian fluids through arterial stenoses. J. Biomech. 29(7), 899–908 (1996)

    Article  Google Scholar 

  32. Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenoses i. steady flow. J. Biomech. 6(4), 395–410 (1973a). doi:10.1016/0021-9290(73)90099-7

    Article  Google Scholar 

  33. Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenoses—II. Unsteady flow. J. Biomech. 6(5), 547–559 (1973b)

    Article  Google Scholar 

Download references

Acknowledgements

The author (PKM) gratefully acknowledge the partial financial support from Special Assistance Programme (SAP-III) sponsored by University Grants Commission (UGC), New Delhi, INDIA (Grant No. F.510/3/DRs-III/2015 (SAP-I)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Srikanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, J.V.R., Srikanth, D. & Mandal, P.K. Computational Hemodynamic Analysis of Flow Through Flexible Permeable Stenotic Tapered Artery. Int. J. Appl. Comput. Math 3 (Suppl 1), 1261–1287 (2017). https://doi.org/10.1007/s40819-017-0415-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0415-4

Keywords

Navigation