Skip to main content
Log in

Numerical Solution of the Onset of Natural Convection in a Rotating Nanofluid Layer Induced by Purely Internal Heating

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the influence of rotation on the onset of natural convection made by purely internal heating in a horizontal layer of nanofluid is investigated. The boundaries are taken to be rigid-rigid and the normal flux of volumetric fraction of nanoparticles under the thermophoretic effects is supposed to be zero on the boundaries. The model used for nanofluid combines the effects of Brownian motion and thermophoresis. The purely internal heating problem determines that there is no applied temperature difference across the layer and so the external Rayleigh number is no longer applicable. Therefore, here the important parameter is an internal Rayleigh number, one based on the heat source strength. Linear stability theory based upon normal mode technique is used to find the critical internal Rayleigh number. The influence of rotation, the Lewis number, the modified diffusivity ratio and the nanoparticle Rayleigh number on the onset of convection are observed numerically using the higher order Galerkin Method. It is found that the effect of increasing the Lewis number, the modified diffusivity ratio and the nanoparticle Rayleigh number is to hasten the onset of convection, while rotation has a stabilizing effect on the stability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Dimensionless wave number

\(a_c \) :

Critical wave number

c :

Specific heat

\(D_B \) :

Brownian diffusion coefficient

\(D_T \) :

Thermophoretic diffusion coefficient

\({\hat{\mathbf{e}}}_\mathbf{z}\) :

Unit vector in z-direction

\({\vec {\mathbf{g}}}\) :

Acceleration due to gravity

\({\vec {\mathbf{j}}}_p \) :

Diffusion mass flux for the nanoparticle

k :

Thermal conductivity

L :

Thickness of nanofluid layer

\(L_e \) :

Lewis number

\(N_A \) :

Modified diffusivity ratio

\(\hbox {N}_{\mathrm{B}} \) :

Modified specific heat increment

p :

Pressure

\(P_r \) :

Prandtl number

\(Q_0^{*}\) :

Strength of internal heat source

\(R_I \) :

Internal Rayleigh number

\(R_{I,c} \) :

Critical internal Rayleigh number

\(T_a \) :

Rotation parameter

t :

Time

T :

Temperature

\({\vec {\mathbf{v}}}\) :

Velocity of nanofluid

\(\left( {x,y,z} \right) \) :

Space co-ordinates

\(\alpha \) :

Thermal diffusivity

\(\beta \) :

Coefficient of thermal expansion

\({\vec {\varvec{\Omega }^{*}}}\) :

Angular velocity

\(\mu \) :

Viscosity

\(\rho \) :

Density of the nanofluid

\(\rho _0 \) :

Reference density of nanofluid

\(\rho _p \) :

Density of nanoparticles

\(\left( {\rho c} \right) \) :

Heat capacity

\(\phi \) :

Volume fraction of the nanoparticles

\(\phi _0 ^{*}\) :

Reference scale for the nanoparticle fraction

\(\nabla _{\mathrm{P}}^{2} \) :

Horizontal Laplacian operator

\(\nabla ^{2}\) :

Laplacian operator

*:

Dimensional variables

’:

Perturbed quantities

0:

Reference scale

f:

Base fluid

p:

Particle

b:

Basic state

References

  1. May, H.O.: A numerical study on natural convection in an inclined square enclosure containing heat sources. Int. J. Heat Mass Transf. 34, 919–928 (1991)

    Article  Google Scholar 

  2. Chadwick, M.L., Webb, B.W., Heaton, H.S.: Natural convection from two-dimensional discrete heat sources in a rectangular enclosure. Int. J. Heat Mass Transf. 34, 1679–1693 (1991)

    Article  Google Scholar 

  3. Tasaka, Y., Kudoh, Y., Takeda, Y., Yanagisawa, T.: Experimental investigation of natural convection induced by internal heat generation. J. Phys. Conf. Ser. 14, 168–179 (2005)

    Article  Google Scholar 

  4. Sparrow, E.M., Goldstein, R.J., Jonsson, V.K.: Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature. J. Fluid Mech. 18, 513–528 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Manna, I.: Synthesis, characterization and application of nanofluid: an overview. J. Indian Inst. Sci. 89, 21–33 (2009)

    Google Scholar 

  6. Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  7. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME N. Y. 66, 99–105 (1995)

    Google Scholar 

  8. Xuan, Y., Li, Q.: Heat transfer enhancement of nano-fluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)

    Article  Google Scholar 

  9. Sheikholeslami, M., Hatami, H., Domairry, G.: Numerical simulation of two phase unsteady nanofluid flow and heat transfer between parallel plates in presence of time dependent magnetic field. J. Taiwan Inst. Chem. Eng. 46, 43–50 (2015)

    Article  Google Scholar 

  10. Akbar, N.S., Nadeem, S., Haq, R.U., Khan, Z.H.: Nanoparticles fraction on the peristaltic flow of third order fluid. J. Comput. Theor. Nanosci. 11, 47–52 (2014)

    Article  Google Scholar 

  11. Ahmadi, H., Moghari, R.M., Esmailpour, K., Mujumdar, A.S.: Numerical investigation of semi confined turbulent slot jet impingement on a concave surface using an Al2O3-water nanofluid. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.06.021

  12. Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)

    Article  MATH  Google Scholar 

  13. Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B Fluids 29, 217–223 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  MATH  Google Scholar 

  15. Chand, R., Rana, G.C.: Thermal Instability of Rivlin-Ericksen elastico-viscous nanofluid saturated by a porous medium. J. Fluids Eng. 134, 121203 (2012)

    Article  Google Scholar 

  16. Chand, R., Rana, G.C.: Thermal instability in a Brinkman porous medium saturated by nanofluid with no nanoparticle flux on boundaries. Spec. Top. Rev. Porous Media Int. J. 5, 277–286 (2014)

    Article  Google Scholar 

  17. Yadav, D., Kim, M.C.: Linear and non-linear analyses of Soret-driven buoyancy convection in a vertically orientated Hele-Shaw cell with nanoparticles suspension. Comput. Fluids 117, 139–148 (2015)

    Article  MathSciNet  Google Scholar 

  18. Yadav, D., Bhargava, R., Agrawal, G.S.: Thermal instability in a nanofluid layer with vertical magnetic field. J. Eng. Math. 80, 147–164 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yadav, D., Nam, D., Lee, J.: The onset of transient Soret-driven MHD convection confined within a Hele-Shaw cell with nanoparticles suspension. J. Taiwan Inst. Chem. Eng. 58, 235–244 (2016)

    Article  Google Scholar 

  20. Yadav, D., Bhargava, R., Agrawal, G.S., Hwang, G.S., Lee, J., Kim, M.C.: Magneto-convection in a rotating layer of nanofluid. Asia-Pac. J. Chem. Eng. 9, 663–677 (2014)

    Article  Google Scholar 

  21. Chand, R., Rana, G.C.: Magneto convection in a layer of nanofluid in porous medium-A more realistic approach. J. Nanofluids 4, 196–202 (2015)

    Article  Google Scholar 

  22. Hatami, M., Hosseinzadeh, K., Domairry, G., Behnamfar, M.T.: Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates. J. Taiwan Inst. Chem. Eng. 45, 2238–2245 (2014)

    Article  Google Scholar 

  23. Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)

    Article  Google Scholar 

  24. Akbar, N.S., Nadeem, S., Haq, R.U., Khan, Z.H.: Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chin. J. Aeronaut. 26, 1389–1397 (2013)

    Article  Google Scholar 

  25. Nadeema, S., Haq, RUl, Khan, Z.H.: Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J. Taiwan Inst. Chem. Eng. 45, 121–126 (2014)

    Article  Google Scholar 

  26. Malvandia, A., Kaffasha, M.H., Ganji, D.D.: Nanoparticles migration effects on magnetohydrodynamic (MHD) laminar mixed convection of alumina/water nanofluid inside microchannels. J. Taiwan Inst. Chem. Eng. 52, 40–56 (2015)

    Article  Google Scholar 

  27. Khan, W.A., Makinde, O.D., Khan, Z.H.: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int. J. Heat Mass Transf. 74, 285–291 (2014)

    Article  Google Scholar 

  28. Yadav, D., Agrawal, G.S., Bhargava, R.: Thermal instability of rotating nanofluid layer. Int. J. Eng. Sci. 49, 1171–1184 (2011)

    Article  MathSciNet  Google Scholar 

  29. Yadav, D., Bhargava, R., Agrawal, G.S.: Numerical solution of a thermal instability problem in a rotating nanofluid layer. Int. J. Heat Mass Transf. 63, 313–322 (2013)

    Article  Google Scholar 

  30. Yadav, D., Kim, M.C.: The effect of rotation on the onset of transient Soret-driven buoyancy convection in a porous layer saturated by a nanofluid. Microfluid. Nanofluid. 17, 1085–1093 (2014)

    Article  Google Scholar 

  31. Yadav, D., Agrawal, G.S., Lee, J.: Thermal instability in a rotating nanofluid layer: a revised model. Ain Shams Eng. J. (2015). doi:10.1016/j.asej.2015.05.005

  32. Yadav, D., Lee, J.: The effect of local thermal non-equilibrium on the onset of Brinkman convection in a nanofluid saturated rotating porous layer. J. Nanofluids 4(3), 335–342 (2015)

    Article  Google Scholar 

  33. Chand, R., Rana, G.C.: On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium. Int. J. Heat Mass Transf. 55, 5417–5424 (2012)

    Article  Google Scholar 

  34. Kuznetsov, A.V., Nield, D.A.: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Transp. Porous Media 85, 941–951 (2010)

    Article  MathSciNet  Google Scholar 

  35. Yadav, D., Agrawal, G.S., Bhargava, R.: The onset of convection in a binary nanofluid saturated porous layer. Int. J. Theor. Appl. Multiscale Mech. 2, 198–224 (2012)

    Article  Google Scholar 

  36. Rana, G.C., Thakur, R.C., Kango, S.K.: On the onset of double-diffusive convection in a layer of nanofluid under rotation saturating a porous medium. J. Porous Media 17, 657–667 (2014)

    Article  Google Scholar 

  37. Nield, D.A., Kuznetsov, A.V.: The onset of convection in a layer of a porous medium saturated by a nanofluid: Effects of conductivity and viscosity variation and cross-diffusion. Transp. Porous Med 92, 837–846 (2012)

    Article  MathSciNet  Google Scholar 

  38. Yadav, D., Agrawal, G.S., Bhargava, R.: The onset of double diffusive nanofluid convection in a layer of a saturated porous medium with thermal conductivity and viscosity variation. J. Porous Media 16, 105–121 (2013)

    Article  Google Scholar 

  39. Yadav, D., Kim, M.C.: The onset of transient Soret-driven buoyancy convection in a nanoparticles suspension with particle concentration-dependent viscosity in a porous medium. J. Porous Media 18, 369–378 (2015)

    Article  Google Scholar 

  40. Yadav, D., Lee, D., Cho, H.H., Lee, J.: The onset of double-diffusive nanofluid convection in a rotating porous medium layer with thermal conductivity and viscosity variation: a revised model. J. Porous Media 19, 31–46 (2016)

    Article  Google Scholar 

  41. Yadav, D., Bhargava, R., Agrawal, G.S., Yadav, N., Lee, J., Kim, M.C.: Thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluid. Nanofluid. 16, 425–440 (2014)

    Article  Google Scholar 

  42. Umavathi, J.C., Yadav, D., Mohite, M.B.: Linear and nonlinear stability analyses of double-diffusive convection in a porous medium layer saturated in a Maxwell nanofluid with variable viscosity and conductivity. Elixir Mech. Eng. 79, 30407–30426 (2015)

    Google Scholar 

  43. Yadav, D., Bhargava, R., Agrawal, G.S.: Boundary and internal heat source effects on the onset of Darcy-Brinkman convection in a porous layer saturated by nanofluid. Int. J. Therm. Sci. 60, 244–254 (2012)

    Article  Google Scholar 

  44. Yadav, D., Lee, J., Cho, H.H.: Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a nanofluid. Powder Technol. 286, 592–601 (2015)

    Article  Google Scholar 

  45. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  46. Hamabata, H., Takashima, M.: The effect of rotation on convective instability in a horizontal fluid layer with internal heat generation. J. Phys. Soc. Jpn. 52, 4145–4151 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D. Numerical Solution of the Onset of Natural Convection in a Rotating Nanofluid Layer Induced by Purely Internal Heating. Int. J. Appl. Comput. Math 3, 3663–3681 (2017). https://doi.org/10.1007/s40819-017-0319-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0319-3

Keywords

Navigation