Skip to main content
Log in

ENSO climate risk: predicting crop yield variability and coherence using cluster-based PCA

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The El Niño–Southern Oscillation (ENSO) has, in recent years, contributed to increases in the yields of major agricultural (annual) crops like wheat and barley in Canada. How such forcing alters the pattern of yield variation across different geographic scales and across large agricultural landscapes like the Canadian Prairies is less understood. Yet, such questions are of major importance in forecasting future cereal crop production. We explore the potential impact of ENSO on wheat and barley across the Canadian Prairies/Western Canada using a multi-scale, cluster-based principal component analysis (PCA) model that integrates machine-learning (K-means clustering) to predict areas of high climate risk. These risk areas are separable clusters of subregions that show similar ENSO-yield correlation response (spatial coherency). Benchmarking this spatial model to non-spatial models indicates that spatial coherency leads to gains in prediction skill. Incorporating spatial coherency increased the skill in predicting crop yield; reducing RMSE error by up to 26–34% (spring wheat) and 2–4% (barley). We infer that accounting for spatial coherency improves the accuracy and reliability of crop yield forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: NOAA/ESRL Physical Sciences Division, Boulder Colorado, https://www.esrl.noaa.gov/psd/data/correlation/

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. International Organization of Vine and Wine (OIV).

  2. http://www.foodsecurityportal.org.

  3. G20 Action Plan on global food price volatility, http://www.foodsecurityportal.org/g20-action-plan-highlights-agriculture-and-food-price-volatility.

References

  • Abdi H, Williams L (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433–459

    Article  Google Scholar 

  • Axelson J, Sauchyn D, Barichivich J (2009) New reconstructions of streamflow variability in the South Saskatchewan River Basin from a network of tree ring chronologies, Alberta, Canada. Water Resour Res 45(9):W09422. doi:10.1029/2008WR007639

  • Bickel P, Diggle P, Fienberg S, Krickeberg K, Olkin I, Wermuth N, Zeger S (2002) Principal component analysis. Springer 2:37–52

    Google Scholar 

  • Bonner S, Newlands N, Heckman N (2014) Modeling regional impacts of climate teleconnections using functional data analysis. Environ Ecol Stat 21(1):1–26

    Article  Google Scholar 

  • Bonsal B, Shabbar A (2011) Large-scale climate oscillations influencing Canada, 1900–2008. Tech. rep., Canadian biodiversity: ecosystem status and trends 2010, report 4

  • Bornn L, Zidek J (2012) Efficient stabilization of crop yield prediction in the Canadian Prairies. Agric For Meteorol 152:223–232

    Article  Google Scholar 

  • Cai R, Mullen J, Bergstrom J, Shurley W, Wetzstein M (2013) Using a climate index to measure crop yield response. J Agric Appl Econ 45(4):719–737

    Article  Google Scholar 

  • Cannon AJ (2015) Revisiting the nonlinear relationship between ENSO and winter extreme station precipitation in North America. Int J Climatol 35(13):4001–4014

    Article  Google Scholar 

  • Caruana R, Elhawary M, Nguyen N, Smith C (2006) Meta clustering. In: Proceedings of the sixth international conference on data mining (ICDM '06). IEEE Computer Society, Washington, DC, USA, pp 107–118. doi:10.1109/ICDM.2006.103

  • Ceglar A, Turco M, Toreti A, Doblas-Reyes F (2017) Linking crop yield anomalies to large-scale atmospheric circulation in Europe. Agric For Meteorol 240:35–45

    Article  Google Scholar 

  • Chipanshi A, Zhang Y, Kouadio L, Newlands N, Davidson A, Hand Hill R, Warren Qian B, Daneshfar B, Bedard F (2015) Evaluation of the integrated canadian crop yield forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric For Meteorol 206:137–150

    Article  Google Scholar 

  • Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9(3):034011

    Article  Google Scholar 

  • Ding C, He X (2004) K-means clustering via principal component analysis. In: Proceedings of the twenty-first international conference on machine learning, ACM, New York, NY, USA, p 29

  • Dofine S (1992) Growth, phenology, and yield components of barley and wheat grown in Alaska. Can J Plant Sci 72(4):1227–1230

    Article  Google Scholar 

  • Garnett E, Khandekar M, Babb J (1998) On the utility of ENSO and PNA indices for long-lead forecasting of summer weather over the crop-growing region of the Canadian Prairies. Theor Appl Climatol 60(1):37–45

    Article  Google Scholar 

  • Gobena A, Gan T (2006) Low-frequency variability in Southwestern Canadian stream flow: links with large-scale climate anomalies. Int J Climatol 26(13):1843–1869

    Article  Google Scholar 

  • Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis. Int J Geogr Inf Sci 25(10):1717–1736

    Article  Google Scholar 

  • Hartigan J, Wong M (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C Appl Stat 28(1):100–108

    Google Scholar 

  • Hoffmann H, Zhao G, Asseng S, Bindi M, Biernath C, Constantin J, Coucheney E, Dechow R, Doro L, Eckersten H (2016) Impact of spatial soil and climate input data aggregation on regional yield simulations. PloS One 11(4):e0151782

    Article  Google Scholar 

  • Holzworth D, Huth N, Zurcher E, Herrmann N, McLean G, Chenu K, van Oosterom E, Snow V, Murphy C, Moore A (2014) APSIM-evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62:327–350

    Article  Google Scholar 

  • Hsiang S, Meng K (2015) Tropical economics. Am Econ Rev Pap Proc 105(5):257–261

    Article  Google Scholar 

  • Hsieh W, Tang B, Garnett E (1999) Teleconnections between Pacific sea surface temperatures and Canadian prairie wheat yield. Agric For Meteorol 96(4):209–217

    Article  Google Scholar 

  • Hussein S, Puri M, Tonge P, Benevento M, Corso A, Clancy J, Mosbergen R, Li M, Lee DS, Cloonan N (2014) Genome-wide characterization of the routes to pluripotency. Nature 516(7530):198–206

    Article  Google Scholar 

  • Iizumi T, Ramankutty N (2016) Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ Res Lett 11(3):034003

    Article  Google Scholar 

  • Iizumi T, Luo JJ, Challinor A, Sakurai G, Yokozawa M, Sakuma H, Brown M, Yamagata T (2014) Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat Commun 5:3712. doi:10.1038/ncomms4712

  • Johnson M, Hsieh W, Cannon A, Davidson A, Bédard F (2016) Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric For Meteorol 218:74–84

    Article  Google Scholar 

  • Jolliffe I (2002) Principal component analysis, 2nd edn. Springer, New York, p 518

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kanungo T, Mount D, Netanyahu N, Piatko C, Silverman R, Wu A (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892

    Article  Google Scholar 

  • Kim KY, Hamlington B, Na H (2015) Theoretical foundation of cyclostationary EOF analysis for geophysical and climatic variables: concepts and examples. Earth Sci Rev 150:201–218

    Article  Google Scholar 

  • Koij F, Saba J (2015) Using cluster analysis and principal component analysis to group lines and determine important traits in white bean. Proced Environ Sci 29:38–40

    Article  Google Scholar 

  • Kouadio L, Newlands N, Potgieter A, McLean G, Hill H (2015) Exploring the potential impacts of climate variability on spring wheat yield with the APSIM decision support tool. Agric Sci 6(7):686

    Google Scholar 

  • Maadooliat M, Huang J, Hu J (2015) Integrating data transformation in principal components analysis. J Comput Gr Stat 24(1):84–103

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson A, Chandler R, Kendon E, Widmann M, Brienen S, Rust H, Sauter T, Themeßl M (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):RG3003

  • Meng T, Carew R, Florkowski W, Klepacka A (2017) Analyzing temperature and precipitation influences on yield distributions of Canola and spring wheat in Saskatchewan. J Appl Meteorol Climatol 56(4):897–913

    Article  Google Scholar 

  • Mkhabela M, Bullock P, Raj S, Wang S, Yang Y (2011) Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric For Meteorol 151(3):385–393

    Article  Google Scholar 

  • Moore FC, Lobell DB (2015) The fingerprint of climate trends on European crop yields. Proc Natl Acad Sci 112(9):2670–2675

    Article  Google Scholar 

  • Newlands N, Stephens D (2015) Increasing confidence in agricultural crop forecasts and climate adaptation decisions with causality analysis, vol 112, no. 9. Tech. rep., University of British Columbia (UBC), pp 2670–2675. doi:10.1073/pnas.1409606112

  • Newlands NK, Espino-Hernández G, Erickson RS (2012) Understanding crop response to climate variability with complex agroecosystem models. Int J Ecol 2012:1–13. doi:10.1155/2012/756242

  • Newlands NK, Zamar DS, Kouadio LA, Zhang Y, Chipanshi A, Potgieter A, Toure S, Hill HS (2014) An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield under environmental uncertainty. Front Environ Sci 2:17

    Article  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10(1):23–36

    Article  Google Scholar 

  • Potgeiter A, Hammer G, Butler D (2002) Spatial and temporal patterns in Australian wheat yield and their relationship with ENSO. Aust J Agric Res 53:77–89

    Article  Google Scholar 

  • Quiring S, Blair D (1999) The utility of global teleconnection indices for long-range crop forecasting on the Canadian Prairies. PhD thesis, University of Winnipeg

  • Ramsay J, Silverman B (2005) Functional data analysis. Springer, New York

    Book  Google Scholar 

  • Ray D, Gerber J, MacDonald G, West P (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    Article  Google Scholar 

  • Ray S, Turi RH (1999) Determination of number of clusters in k-means clustering and application in colour segmentation. In: The 4th international conference on advances in pattern recognition and digital techniques, pp 137–143

  • Rodríguez-Fonseca B, Suárez-Moreno R, Ayarzagüena B, López-Parages J, Gómara I, Villamayor J, Mohino E, Losada T, Castaño-Tierno A (2016) A review of ENSO influence on the North Atlantic: a non-stationary signal. Atmosphere 7:87

    Article  Google Scholar 

  • Saib MS, Caudeville J, Beauchamp M, Carré F, Ganry O, Trugeon A, Cicolella A (2015) Building spatial composite indicators to analyze environmental health inequalities on a regional scale. Environ Health 14(1):68

    Article  Google Scholar 

  • Sauchyn D, Kerr S (2016) Vulnerability and adaptation: the Canadian Prairies and South America. University of Calgary Press, Calgary. Chap Past and future drought: lessons from climate science: Canadian Prairies drought from a paleoclimate perspective

  • Scherm H, Yang X (1995) Interannual variations in wheat rust development in China and the United States in relation to the El Niño/Southern Oscillation. Phytopathology 85(9):970–976

    Article  Google Scholar 

  • Shabbar A, Skinner W (2004) Summer drought patterns in Canada and the relationship to global sea surface temperatures. J Clim 17(14):2866–2880

    Article  Google Scholar 

  • Shabbar A, Bonsal B, Khandekar M (1997) Canadian precipitation patterns associated with the Southern Oscillation. J Clim 10(12):3016–3027

    Article  Google Scholar 

  • Sohn SJ, Tam CY, Jeong HI (2016) How do the strength and type of ENSO affect SST predictability in coupled models. Sci Rep 6:33790. doi:10.1038/srep33790

  • St George S, Sauchyn D (2006) Paleoenvironmental perspectives on drought in Western Canada—introduction. Can Water Resour J 31(4):197–204

    Article  Google Scholar 

  • Stone R, Hammer G, Marcussen T (1996) Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 384:252–255

    Article  Google Scholar 

  • Sun L, Mitchell SW, Davidson A (2012) Multiple drought indices for agricultural drought risk assessment on the Canadian Prairies. Int J Climatol 32(11):1628–1639

    Article  Google Scholar 

  • Thompson B (2005) Canonical correlation analysis. In: Everitt BS, Howell D (eds) Encyclopedia of statistics in behavioral science, vol 1. Wiley, West Sussex, UK, pp 192–196

  • Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4(1):17–22

    Article  Google Scholar 

  • Wagstaff K, Cardie C, Rogers S, Schrödl S (2001) Constrained k-means clustering with background knowledge. In: ICML ’01 proceedings of the eighteenth international conference on machine learning, pp 577–584

  • Wang S, Huang J, He Y, Guan Y (2014) Combined effects of the Pacific decadal oscillation and El Nino–Southern oscillation on global land dry–wet changes. Sci Rep 4:6651

    Article  Google Scholar 

  • Watson J, Challinor A, Fricker T, Ferro C (2015) Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model. Clim Change 132(1):93–109

    Article  Google Scholar 

  • Wigley T, Qipu T (1983) Crop-climate modeling using spatial patterns of yield and climate. Part 1: background and an example from Australia. J Clim Appl Meteorol 22(11):1831–1841.

  • Xie P, Arkin PA (1996) Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9(4):840–858

    Article  Google Scholar 

  • Yu B, Zhang X, Lin H, Yu JY (2015) Comparison of wintertime North American climate impacts associated with multiple ENSO indices. Atmos Ocean 53(4):426–445

    Article  Google Scholar 

  • Zheng B, Chenu K, DM F, Chapman S (2012) Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob Chang Biol 18(9):2899–2914

Download references

Acknowledgements

This study was funded by the Growing Forward Two Federal Research Program (Agriculture and Agri-Food Canada, AAFC) (Project No. J-000179.001.02) and assistance of Canada’s Federal Research Affiliate Program (RAP). Agro-climatic and CAR crop yield data used in this study were provided by partners in Statistics Canada and Environment and Climate Change Canada (ECCC). We thank Dr. Aston Chipanshi (AAFC) and Dr. Tracy A. Porcelli for their helpful review and feedback on earlier manuscript drafts, and Dr. Alex Cannon (ECCC) for input data guidance, and anonymous reviewers for their providing thoughtful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Atkinson, D.E. & Newlands, N.K. ENSO climate risk: predicting crop yield variability and coherence using cluster-based PCA. Model. Earth Syst. Environ. 3, 1343–1359 (2017). https://doi.org/10.1007/s40808-017-0382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-017-0382-0

Keywords

Navigation