Skip to main content

Advertisement

Log in

NK Cells and γδT Cells for Relapse Protection after Allogeneic Hematopoietic Cell Transplantation (HCT)

  • Cellular Therapies: Preclinical and Clinical (EM Horwitz, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The outcome of allogeneic stem cell transplantation (allo-HCT) is still compromised by relapse and complications. NK cells and γδT cells, effectors that both function through MHC-unrestricted mechanisms, can target transformed and infected cells without inducing graft-versus-host disease (GVHD). Allo-HCT platforms based on CD34+ selection or αβ-TCR depletion result in low grades of GVHD, early immune reconstitution (IR) of NK and γδT cells and minimal usage of GVHD prophylaxis. In this review we will discuss strategies to retain and expand the quantity, diversity, and functionality of these reconstituting innate cell types.

Recent Findings

Bisphosphonates, IL-15 cytokine administration, specific antibodies, checkpoint inhibitors, and (CMV based) vaccination are currently being evaluated to enhance IR. All these approaches have shown to potentially enhance both NK and γδT cell immuno-repertoires.

Summary

Rapidly accumulating data linking innate biology to proposed clinical immune interventions will give unique opportunities to unravel shared pathways which determine the graft-versus-tumor effects of NK and γδT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Baron F, Labopin M, Blaise D, Lopez-Corral L, Vigouroux S, Craddock C, et al. Impact of in vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-SCT from a HLA-identical sibling donor: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2014;49(3):389–96. https://doi.org/10.1038/bmt.2013.204.

    Article  CAS  PubMed  Google Scholar 

  2. Zaia J, Baden L, Boeckh MJ, Chakrabarti S, Einsele H, Ljungman P, et al. Viral disease prevention after hematopoietic cell transplantation. Bone Marrow Transplant. 2009;44(8):471–82. https://doi.org/10.1038/bmt.2009.258.

    Article  CAS  PubMed  Google Scholar 

  3. • Luznik L, Bolanos-Meade J, Zahurak M, Chen AR, Smith BD, Brodsky R, et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115(16):3224–30. https://doi.org/10.1182/blood-2009-11-251595. First large report of the effectiveness of post transplant cycloplosphamide as GVHD prophylaxis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Fuchs EJ. HLA-haploidentical blood or marrow transplantation with high-dose, post-transplantation cyclophosphamide. Bone Marrow Transplant. 2015;50(Suppl 2):S31–6. https://doi.org/10.1038/bmt.2015.92. Large clinical cohorts who received post transplant cyclophosphamide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pasquini MC, Devine S, Mendizabal A, Baden LR, Wingard JR, Lazarus HM, et al. Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(26):3194–201. https://doi.org/10.1200/JCO.2012.41.7071.

    Article  CAS  Google Scholar 

  6. Maschan M, Shelikhova L, Ilushina M, Kurnikova E, Boyakova E, Balashov D, et al. TCR-alpha/beta and CD19 depletion and treosulfan-based conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia. Bone Marrow Transplant. 2016;51(5):668–74. https://doi.org/10.1038/bmt.2015.343.

    Article  CAS  PubMed  Google Scholar 

  7. Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124(5):822–6. https://doi.org/10.1182/blood-2014-03-563817.

    Article  CAS  PubMed  Google Scholar 

  8. Airoldi I, Bertaina A, Prigione I, Zorzoli A, Pagliara D, Cocco C, et al. gammadelta T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-alphabeta+/CD19+ lymphocytes. Blood. 2015;125(15):2349–58. https://doi.org/10.1182/blood-2014-09-599423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bosch M, Khan FM, Storek J. Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol. 2012;19(4):324–35. https://doi.org/10.1097/MOH.0b013e328353bc7d.

    Article  PubMed  Google Scholar 

  10. Admiraal R, Nierkens S, de Witte MA, Petersen EJ, Fleurke GJ, Verrest L, et al. Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation: a multicentre, retrospective, pharmacodynamic cohort analysis. Lancet Haematol. 2017;4(4):e183–e91. https://doi.org/10.1016/S2352-3026(17)30029-7.

    Article  PubMed  Google Scholar 

  11. Hirokawa M, Horiuchi T, Kawabata Y, Kitabayashi A, Miura AB. Reconstitution of gammadelta T cell repertoire diversity after human allogeneic hematopoietic cell transplantation and the role of peripheral expansion of mature T cell population in the graft. Bone Marrow Transplant. 2000;26(2):177–85. https://doi.org/10.1038/sj.bmt.1702478.

    Article  CAS  PubMed  Google Scholar 

  12. Scheper W, Grunder C, Straetemans T, Sebestyen Z, Kuball J. Hunting for clinical translation with innate-like immune cells and their receptors. Leukemia. 2014;28(6):1181–90. https://doi.org/10.1038/leu.2013.378.

    Article  CAS  PubMed  Google Scholar 

  13. Handgretinger R. Negative depletion of CD3(+) and TcRalphabeta(+) T cells. Curr Opin Hematol. 2012;19(6):434–9. https://doi.org/10.1097/MOH.0b013e3283582340.

    Article  CAS  PubMed  Google Scholar 

  14. Lang P, Feuchtinger T, Teltschik HM, Schwinger W, Schlegel P, Pfeiffer M, et al. Improved immune recovery after transplantation of TCRalphabeta/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50(Suppl 2):S6–10. https://doi.org/10.1038/bmt.2015.87.

    Article  CAS  PubMed  Google Scholar 

  15. Deniger DC, Moyes JS, Cooper LJ. Clinical applications of gamma delta T cells with multivalent immunity. Front Immunol. 2014;5:636. https://doi.org/10.3389/fimmu.2014.00636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Childs RW, Carlsten M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov. 2015;14(7):487–98. https://doi.org/10.1038/nrd4506.

    Article  CAS  PubMed  Google Scholar 

  17. Scheper W, Sebestyen Z, Kuball J. Cancer Immunotherapy Using gammadeltaT Cells: Dealing with Diversity. Front Immunol. 2014;5:601. https://doi.org/10.3389/fimmu.2014.00601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Silva-Santos B, Serre K, Norell H. gammadelta T cells in cancer. Nat Rev Immunol. 2015;15(11):683–91. https://doi.org/10.1038/nri3904.

    Article  CAS  PubMed  Google Scholar 

  19. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7–19. https://doi.org/10.1038/nrc.2015.5.

    Article  CAS  PubMed  Google Scholar 

  20. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10. https://doi.org/10.1038/ni1582.

    Article  CAS  PubMed  Google Scholar 

  21. Orr MT, Lanier LL. Natural killer cell education and tolerance. Cell. 2010;142(6):847–56. https://doi.org/10.1016/j.cell.2010.08.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med. 2003;198(4):557–67. https://doi.org/10.1084/jem.20030788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495–502. https://doi.org/10.1038/ni1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thielens A, Vivier E, Romagne F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol. 2012;24(2):239–45. https://doi.org/10.1016/j.coi.2012.01.001.

    Article  CAS  PubMed  Google Scholar 

  25. Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A. Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol. 2005;17(2):211–7. https://doi.org/10.1016/j.coi.2005.01.007.

    Article  CAS  PubMed  Google Scholar 

  26. Bjorkstrom NK, Ljunggren HG, Sandberg JK. CD56 negative NK cells: origin, function, and role in chronic viral disease. Trends Immunol. 2010;31(11):401–6. https://doi.org/10.1016/j.it.2010.08.003.

    Article  PubMed  CAS  Google Scholar 

  27. Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol. 2010;20(4):202–13. https://doi.org/10.1002/rmv.655.

    Article  PubMed  Google Scholar 

  28. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16(11):1114–23. https://doi.org/10.1038/ni.3298.

    Article  CAS  PubMed  Google Scholar 

  29. Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J, et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood. 2012;120(11):2269–79. https://doi.org/10.1182/blood-2012-05-430470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. • Sebestyen Z, Scheper W, Vyborova A, Gu S, Rychnavska Z, Schiffler M, et al. RhoB Mediates Phosphoantigen Recognition by Vgamma9Vdelta2 T Cell Receptor. Cell Rep. 2016;15(9):1973–85. https://doi.org/10.1016/j.celrep.2016.04.081. Authors provide a mechanism on how vγ9δ2+ T cells can specically target cancer cells. Altered RhoB activity and distribution in tumor cells induces membrane immobility of BTN3A1, the ligand for the vγ9δ2 TCR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. • Cichocki F, Cooley S, Davis Z, DeFor TE, Schlums H, Zhang B, et al. CD56dimCD57+NKG2C+ NK cell expansion is associated with reduced leukemia relapse after reduced intensity HCT. Leukemia. 2016;30(2):456–63. https://doi.org/10.1038/leu.2015.260. In a large clinical cohort CMV induced adaptive NK cells results in reduced relapse rates after allo-HCT.

    CAS  PubMed  Google Scholar 

  32. Green ML, Leisenring WM, Xie H, Walter RB, Mielcarek M, Sandmaier BM, et al. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia. Blood. 2013;122(7):1316–24. https://doi.org/10.1182/blood-2013-02-487074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13(2):88–100. https://doi.org/10.1038/nri3384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Correia DV, Lopes A, Silva-Santos B. Tumor cell recognition by gammadelta T lymphocytes: T-cell receptor vs. NK-cell receptors. Oncoimmunology. 2013;2(1):e22892. https://doi.org/10.4161/onci.22892.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity. 2009;31(2):184–96. https://doi.org/10.1016/j.immuni.2009.08.006.

    Article  CAS  PubMed  Google Scholar 

  36. Sebestyen Z, Scheper W, Vyborova A, Gu S, Rychnavska Z, Schiffler M, et al. RhoB Mediates Phosphoantigen Recognition by Vgamma9Vdelta2 T Cell Receptor. Cell Rep. 2016; https://doi.org/10.1016/j.celrep.2016.04.081.

  37. •• Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45. https://doi.org/10.1038/nm.3909. Comprehensive analysis of tumor infitrating leucocytes, showing that γδT cells present at the tumor site are strongly associated with clinical benificial.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kunzmann V, Bauer E, Wilhelm M. Gamma/delta T-cell stimulation by pamidronate. N Engl J Med. 1999;340(9):737–8. https://doi.org/10.1056/NEJM199903043400914.

    Article  CAS  PubMed  Google Scholar 

  39. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003;197(2):163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer. 2016;16(11):718–31. https://doi.org/10.1038/nrc.2016.76.

    Article  CAS  PubMed  Google Scholar 

  41. Fisher JP, Heuijerjans J, Yan M, Gustafsson K, Anderson J. gammadelta T cells for cancer immunotherapy: A systematic review of clinical trials. Oncoimmunology. 2014;3(1):e27572. https://doi.org/10.4161/onci.27572.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, et al. Targeted activation of human Vgamma9Vdelta2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell. 2014;26(4):565–76. https://doi.org/10.1016/j.ccr.2014.07.026.

    Article  CAS  PubMed  Google Scholar 

  43. Dharnidharka VR, Mohanakumar T. New approaches to treating B-cell cancers induced by Epstein-Barr virus. N Engl J Med. 2015;372(6):569–71. https://doi.org/10.1056/NEJMcibr1415117.

    Article  CAS  PubMed  Google Scholar 

  44. McClune BL, Polgreen LE, Burmeister LA, Blaes AH, Mulrooney DA, Burns LJ, et al. Screening, prevention and management of osteoporosis and bone loss in adult and pediatric hematopoietic cell transplant recipients. Bone Marrow Transplant. 2011;46(1):1–9. https://doi.org/10.1038/bmt.2010.198.

    Article  CAS  PubMed  Google Scholar 

  45. Pundole X, Cheema HI, Petitto GS, Lopez-Olivo MA, Suarez-Almazor ME, Lu H. Prevention and treatment of bone loss and fractures in patients undergoing a hematopoietic stem cell transplant: a systematic review and meta-analysis. Bone Marrow Transplant. 2017; https://doi.org/10.1038/bmt.2016.312.

  46. •• Bertaina A, Zorzoli A, Petretto A, Barbarito G, Inglese E, Merli P, et al. Zoledronic acid boosts gammadelta T-cell activity in children receiving alphabeta+ T and CD19+ cell-depleted grafts from an HLA-haplo-identical donor. Oncoimmunology. 2017;6(2):e1216291. https://doi.org/10.1080/2162402X.2016.1216291. This trial shows that ZOL stimulates vδ2+ T cells and to a lesser extend vδ1+ T cells. ZOL treatment may associate with an improved outcome.

    Article  CAS  PubMed  Google Scholar 

  47. Nussbaumer O, Gruenbacher G, Gander H, Thurnher M. DC-like cell-dependent activation of human natural killer cells by the bisphosphonate zoledronic acid is regulated by gammadelta T lymphocytes. Blood. 2011;118(10):2743–51. https://doi.org/10.1182/blood-2011-01-328526.

    Article  CAS  PubMed  Google Scholar 

  48. Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116(10):1726–33. https://doi.org/10.1182/blood-2009-07-234211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • An G, Acharya C, Feng X, Wen K, Zhong M, Zhang L, et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood. 2016;128(12):1590–603. https://doi.org/10.1182/blood-2016-03-707547. In this report the authors show that osteoclasts in MM contribute to the immunosuppressive microenvironment. Treatment with an anti-CD38 antibody shows hat osteoclastogenesis is impaired and T cell immunity is restored.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters’. Trends Mol Med. 2014;20(8):449–59. https://doi.org/10.1016/j.molmed.2014.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271(12):907–13.

    Article  CAS  PubMed  Google Scholar 

  52. •• Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8. https://doi.org/10.4049/jimmunol.1490019. Reviews IL-2 as first lymphocyte stimulator.

    Article  CAS  PubMed  Google Scholar 

  53. •• Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014;123(25):3855–63. https://doi.org/10.1182/blood-2013-10-532531. Large cumulative report showing 30-50% remission in advanced AML using lymphodepleting chemotherapy, haploidentical NK cells and IL-2 with or with Treg depletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res. 2015;3(3):219–27. https://doi.org/10.1158/2326-6066.CIR-15-0009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rautela J, Huntington ND. IL-15 signaling in NK cell cancer immunotherapy. Curr Opin Immunol. 2016;44:1–6. https://doi.org/10.1016/j.coi.2016.10.004.

    Article  PubMed  CAS  Google Scholar 

  56. Burkett PR, Koka R, Chien M, Chai S, Boone DL, Ma A. Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med. 2004;200(7):825–34. https://doi.org/10.1084/jem.20041389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bergamaschi C, Bear J, Rosati M, Beach RK, Alicea C, Sowder R, et al. Circulating IL-15 exists as heterodimeric complex with soluble IL-15Ralpha in human and mouse serum. Blood. 2012;120(1):e1–8. https://doi.org/10.1182/blood-2011-10-384362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Mao Y, van Hoef V, Zhang X, Wennerberg E, Lorent J, Witt K, et al. IL-15 activates mTOR and primes stress-activated gene-expression leading to prolonged anti-tumor capacity of NK cells. Blood. 2016; https://doi.org/10.1182/blood-2016-02-698027. This study shows by gene-expression analysis how IL-15 is superior towards IL-2 in stimulating NK cells and that mTOR is key in the signaling process.

  59. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000;191(5):771–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cairo C, Sagnia B, Cappelli G, Colizzi V, Leke RG, Leke RJ, et al. Human cord blood gammadelta T cells expressing public Vgamma2 chains dominate the response to bisphosphonate plus interleukin-15. Immunology. 2013;138(4):346–60. https://doi.org/10.1111/imm.12039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ribot JC, Ribeiro ST, Correia DV, Sousa AE, Silva-Santos B. Human gammadelta thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J Immunol. 2014;192(5):2237–43. https://doi.org/10.4049/jimmunol.1303119.

    Article  CAS  PubMed  Google Scholar 

  62. Garcia VE, Jullien D, Song M, Uyemura K, Shuai K, Morita CT, et al. IL-15 enhances the response of human gamma delta T cells to nonpeptide [correction of nonpetide] microbial antigens. J Immunol. 1998;160(9):4322–9.

    CAS  PubMed  Google Scholar 

  63. •• Dadi S, Chhangawala S, Whitlock BM, Franklin RA, Luo CT, Oh SA, et al. Cancer Immunosurveillance by Tissue-Resident Innate Lymphoid Cells and Innate-like T Cells. Cell. 2016;164(3):365–77. https://doi.org/10.1016/j.cell.2016.01.002. In a mouse models these authors show that the non circulating lymphocytes are shaped by the tumor microenvironment. IL-15 promotes anti-tumor reactivity of these innate lymphoid cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Almeida AR, Correia DV, Fernandes-Platzgummer A, da Silva CL, da Silva MG, Anjos DR, et al. Delta One T Cells for Immunotherapy of Chronic Lymphocytic Leukemia: Clinical-Grade Expansion/Differentiation and Preclinical Proof of Concept. Clin Cancer Res. 2016;22(23):5795–804. https://doi.org/10.1158/1078-0432.CCR-16-0597.

    Article  CAS  PubMed  Google Scholar 

  65. Van Acker HH, Anguille S, Willemen Y, Van den Bergh JM, Berneman ZN, Lion E, et al. Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells. J Hematol Oncol. 2016;9(1):101. https://doi.org/10.1186/s13045-016-0329-3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. •• Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(1):74–82. https://doi.org/10.1200/JCO.2014.57.3329. In this first clinical trial with recombinant IL-15, the authors show that r-IL15 most strongly promotes NK and γδT cells.

    Article  CAS  Google Scholar 

  67. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206(1):25–34. https://doi.org/10.1084/jem.20082013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, et al. Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci U S A. 2006;103(24):9166–71. https://doi.org/10.1073/pnas.0600240103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wong HC, Jeng EK, Rhode PR. The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8+ T cells into innate-like effector cells with antitumor activity. Oncoimmunology. 2013;2(11):e26442. https://doi.org/10.4161/onci.26442.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mortier E, Quemener A, Vusio P, Lorenzen I, Boublik Y, Grotzinger J, et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem. 2006;281(3):1612–9. https://doi.org/10.1074/jbc.M508624200.

    Article  CAS  PubMed  Google Scholar 

  71. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115–23. https://doi.org/10.1053/j.seminhematol.2010.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Felices M, Lenvik TR, Davis ZB, Miller JS, Vallera DA. Generation of BiKEs and TriKEs to Improve NK Cell-Mediated Targeting of Tumor Cells. Methods Mol Biol. 2016;1441:333–46. https://doi.org/10.1007/978-1-4939-3684-7_28.

    Article  CAS  PubMed  Google Scholar 

  73. Gleason MK, Verneris MR, Todhunter DA, Zhang B, McCullar V, Zhou SX, et al. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol Cancer Ther. 2012;11(12):2674–84. https://doi.org/10.1158/1535-7163.MCT-12-0692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gleason MK, Ross JA, Warlick ED, Lund TC, Verneris MR, Wiernik A, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood. 2014;123(19):3016–26. https://doi.org/10.1182/blood-2013-10-533398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. • Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clin Cancer Res. 2016;22(14):3440–50. https://doi.org/10.1158/1078-0432.CCR-15-2710. Here the authors show that adding an IL-15 linker to a CD16-CD33 BiKE creates a TriKE with more robust NK cell mediated anti-leukemia responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gillis C, Gouel-Cheron A, Jonsson F, Bruhns P. Contribution of Human FcgammaRs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies. Front Immunol. 2014;5:254. https://doi.org/10.3389/fimmu.2014.00254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Braakman E, van de Winkel JG, van Krimpen BA, Jansze M, Bolhuis RL. CD16 on human gamma delta T lymphocytes: expression, function, and specificity for mouse IgG isotypes. Cell Immunol. 1992;143(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  78. Schiller CB, Braciak TA, Fenn NC, Seidel UJ, Roskopf CC, Wildenhain S, et al. CD19-specific triplebody SPM-1 engages NK and gammadelta T cells for rapid and efficient lysis of malignant B-lymphoid cells. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.13110.

  79. Seidel UJ, Vogt F, Grosse-Hovest L, Jung G, Handgretinger R, Lang P. gammadelta T Cell-Mediated Antibody-Dependent Cellular Cytotoxicity with CD19 Antibodies Assessed by an Impedance-Based Label-Free Real-Time Cytotoxicity Assay. Front Immunol. 2014;5:618. https://doi.org/10.3389/fimmu.2014.00618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61. https://doi.org/10.1016/j.ccell.2015.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9):1025–36. https://doi.org/10.1038/ni.3518.

    Article  CAS  PubMed  Google Scholar 

  82. Iwasaki M, Tanaka Y, Kobayashi H, Murata-Hirai K, Miyabe H, Sugie T, et al. Expression and function of PD-1 in human gammadelta T cells that recognize phosphoantigens. Eur J Immunol. 2011;41(2):345–55. https://doi.org/10.1002/eji.201040959.

    Article  CAS  PubMed  Google Scholar 

  83. Wistuba-Hamprecht K, Martens A, Haehnel K, Geukes Foppen M, Yuan J, Postow MA, et al. Proportions of blood-borne Vdelta1+ and Vdelta2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur J Cancer. 2016;64:116–26. https://doi.org/10.1016/j.ejca.2016.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Albring JC, Inselmann S, Sauer T, Schliemann C, Altvater B, Kailayangiri S, et al. PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation. Bone Marrow Transplant. 2017;52(2):317–20. https://doi.org/10.1038/bmt.2016.274.

    Article  CAS  PubMed  Google Scholar 

  85. Yared JA, Hardy N, Singh Z, Hajj S, Badros AZ, Kocoglu M, et al. Major clinical response to nivolumab in relapsed/refractory Hodgkin lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51(6):850–2. https://doi.org/10.1038/bmt.2015.346.

    Article  CAS  PubMed  Google Scholar 

  86. Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, Zaia J. Cytomegalovirus in hematopoietic stem cell transplant recipients: Current status, known challenges, and future strategies. Biol Blood Marrow Transplant. 2003;9(9):543–58.

    Article  PubMed  Google Scholar 

  87. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012;119(11):2665–74. https://doi.org/10.1182/blood-2011-10-386995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. •• Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity. 2015;42(3):443–56. https://doi.org/10.1016/j.immuni.2015.02.008. Here the authors show that CMV infection induces a epigenetic diversification of adaptive NK cells, parallelling T cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Elmaagacli AH, Steckel NK, Koldehoff M, Hegerfeldt Y, Trenschel R, Ditschkowski M, et al. Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood. 2011;118(5):1402–12. https://doi.org/10.1182/blood-2010-08-304121.

    Article  CAS  PubMed  Google Scholar 

  90. Dechanet J, Merville P, Lim A, Retiere C, Pitard V, Lafarge X, et al. Implication of gammadelta T cells in the human immune response to cytomegalovirus. J Clin Invest. 1999;103(10):1437–49. https://doi.org/10.1172/JCI5409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. • Scheper W, van Dorp S, Kersting S, Pietersma F, Lindemans C, Hol S, et al. gammadeltaT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia. 2013;27(6):1328–38. https://doi.org/10.1038/leu.2012.374. This report shows cross reactivity of CMV induced vδ1+ T cells with cancer cells.

    Article  CAS  PubMed  Google Scholar 

  92. •• Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdorfer L, et al. Human gammadelta T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol. 2017; https://doi.org/10.1038/ni.3686. This report utilizes NGS to show that γδT cells reconstitute quickly post allo-HCT. CMV reactivation results in adaptive clonal expansion of γδT cells.

  93. Laberko A, Bogoyavlenskaya A, Shelikhova L, Shekhovtsova Z, Balashov D, Voronin K, et al. Risk Factors for and the Clinical Impact of Cytomegalovirus and Epstein-Barr Virus Infections in Pediatric Recipients of TCR Alpha/Beta- and CD19-Depleted Grafts. Biol Blood Marrow Transplant. 2016; https://doi.org/10.1016/j.bbmt.2016.12.635.

  94. Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S, et al. The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood. 2010;116(12):2164–72. https://doi.org/10.1182/blood-2010-01-255166.

    Article  CAS  PubMed  Google Scholar 

  95. Pitard V, Roumanes D, Lafarge X, Couzi L, Garrigue I, Lafon ME, et al. Long-term expansion of effector/memory Vdelta2-gammadelta T cells is a specific blood signature of CMV infection. Blood. 2008;112(4):1317–24. https://doi.org/10.1182/blood-2008-01-136713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lalor SJ, McLoughlin RM. Memory gammadelta T Cells-Newly Appreciated Protagonists in Infection and Immunity. Trends Immunol. 2016;37(10):690–702. https://doi.org/10.1016/j.it.2016.07.006.

    Article  CAS  PubMed  Google Scholar 

  97. Schleiss MR. Cytomegalovirus vaccines under clinical development. J Virus Erad. 2016;2(4):198–207.

    PubMed  PubMed Central  Google Scholar 

  98. Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH, Wloch MK, et al. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect Dis. 2012;12(4):290–9. https://doi.org/10.1016/S1473-3099(11)70344-9.

    Article  CAS  PubMed  Google Scholar 

  99. • Nakamura R, La Rosa C, Longmate J, Drake J, Slape C, Zhou Q, et al. Viraemia, immunogenicity, and survival outcomes of cytomegalovirus chimeric epitope vaccine supplemented with PF03512676 (CMVPepVax) in allogeneic haemopoietic stem-cell transplantation: randomised phase 1b trial. Lancet Haematol. 2016;3(2):e87–98. https://doi.org/10.1016/S2352-3026(15)00246-X. Clinical trial showing that administration of the CMV specific peptide vaccine early after allo-HCT is safe, results in less CMV viremia and improved relape free survival

    Article  PubMed  Google Scholar 

  100. Schmitt M, Schmitt A, Wiesneth M, Hückelhoven A, Wu Z, Kuball J, et al. Peptide Vaccination Against Cytomegalovirus (CMV) Elicits Immunological and Clinical Responses after Allogeneic Stem Cell Transplantation Even from a CMV Seronegative Donor. San Diego: ASH; 2016.

    Google Scholar 

  101. Goodier MR, Rodriguez-Galan A, Lusa C, Nielsen CM, Darboe A, Moldoveanu AL, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197(1):313–25. https://doi.org/10.4049/jimmunol.1502049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clinical Infectious Diseases. 2014;58(3):e44–100. https://doi.org/10.1093/cid/cit684.

    Article  PubMed  Google Scholar 

  103. • Djaoud Z, Guethlein LA, Horowitz A, Azzi T, Nemat-Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and gammadelta T cells. J Exp Med. 2017; https://doi.org/10.1084/jem.20161017. Here the authors show that EBV infections results in differential NK and γδT cell mediated innate immune responses.

  104. Gale RP, Fuchs EJ. Is there really a specific graft-versus-leukaemia effect? Bone Marrow Transplant. 2016;51(11):1413–5. https://doi.org/10.1038/bmt.2016.183.

    Article  CAS  PubMed  Google Scholar 

  105. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81. https://doi.org/10.1038/nri3191.

    Article  CAS  PubMed  Google Scholar 

  106. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81. https://doi.org/10.1038/nrc.2016.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. de Witte MA, Kierkels GJ, Straetemans T, Britten CM, Kuball J. Orchestrating an immune response against cancer with engineered immune cells expressing alphabetaTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge. Cancer Immunol Immunother. 2015;64(7):893–902. https://doi.org/10.1007/s00262-015-1710-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Thomas ED, Lochte HL Jr, Cannon JH, Sahler OD, Ferrebee JW. Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest. 1959;38:1709–16. https://doi.org/10.1172/JCI103949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, et al. A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell. 2016;166(6):1500–1511 e9. https://doi.org/10.1016/j.cell.2016.08.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. • Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med. 2013;5(208):208ra145. https://doi.org/10.1126/scitranslmed.3006702. First report using CyTOF to perform a more comprehensive analysis of NK cell diversity as compared to classical immuno flow cytometry.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Moniek A. de Witte received the following funding: KWF UU 2015-7553. Jeffrey S. Miller received the following funding: NIH/NCI P01 CA65493, NIH/NCI P01 CA111412, NIH/NCI R35 CA197292. Funding for this study was provided by ZonMW 43400003 and VIDI-ZonMW 917.11.337, KWF UU 2010-4669, UU 2013-6426, UU 2014-6790 and UU 2015-7601, Vrienden van het UMCU, AICR 10-0736 & 15-0049 to J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Miller.

Ethics declarations

Conflict of Interest

Moniek A. de Witte has no conflict of interest.

Jürgen Kuball is scientific co-founder and CSO of Gadeta BV (www.gadeta.nl) and is a shareholder. He is also an inventor on different patents given to Gadeta via the University Medical Centre Utrecht that deal with γδ TCR, processing strategies, and their ligands. In addition, he has received grants from Novartis and Miltenyi Biotech.

Jeffrey S. Miller is a consultant and scientific advisory for Fate Therapeutics and GT Biopharma. He also is on the scientific advisory board for Celgene. In addition, he has pending patents via the University of Minnesota for Fate Therapeutics and GT Biopharma.

Human and Animal Rights and Informed Consent

This article refers to published studies with both human and animal subjects performed by the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

This article is part of the Topical Collection on Cellular Therapies: Preclinical and Clinical

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Witte, M.A., Kuball, J. & Miller, J.S. NK Cells and γδT Cells for Relapse Protection after Allogeneic Hematopoietic Cell Transplantation (HCT). Curr Stem Cell Rep 3, 301–311 (2017). https://doi.org/10.1007/s40778-017-0106-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-017-0106-4

Keywords