Skip to main content
Log in

Improving the prediction of complex nonlinear turbulent dynamical systems using nonlinear filter, smoother and backward sampling techniques

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

Predicting complex nonlinear turbulent dynamical systems using partial observations is an important topic. Despite the simplicity of the forecast based on the ensemble mean time series, several critical shortcomings in the ensemble mean forecast and using path-wise measurements to quantify the prediction error are illustrated in this article. Then, a new ensemble method is developed for improving the long-range forecast. This new approach utilizes a mixture of the posterior distributions from data assimilation and is more skillful in predicting non-Gaussian statistics and extreme events than the traditional method by simply running the forecast model forward. Next, a systematic framework of improving forecast models is established, aiming at advancing the predictions at all ranges. The starting model in this new framework belongs to a rich class of nonlinear systems with conditional Gaussian structures. These models allow an efficient nonlinear smoother for state estimation using partial observations, which in turn facilitates a rapid parameter estimation based on an expectation–maximization algorithm. Conditioned on the partially observed time series, the nonlinear smoother further advances an efficient backward sampling of the hidden trajectories, the dynamical and statistical characteristics from which allow a systematic quantification of model error through information theory. The sampled trajectories then serve as the recovered observations of the hidden variables that promote the use of general nonlinear data-driven modeling techniques for a further improvement of the forecast model. A low-order model of the layered topographic equations with regime switching and rare events is used as a test example to illustrate this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Blanchard-Wrigglesworth, E., Bitz, C., Holland, M.: Influence of initial conditions and climate forcing on predicting arctic sea ice. Geophys. Res. Lett. 38(18), 18503 (2011)

  2. Bourke, R.H., Garrett, R.P.: Sea ice thickness distribution in the arctic ocean. Cold Reg. Sci. Technol. 13(3), 259–280 (1987)

    Article  Google Scholar 

  3. Branicki, M., Majda, A.: Quantifying Bayesian filter performance for turbulent dynamical systems through information theory. Commun. Math. Sci 12(5), 901–978 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Branicki, M., Majda, A.J.: Quantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency. Nonlinearity 25(9), 2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Branicki, M., Majda, A.J.: Dynamic stochastic superresolution of sparsely observed turbulent systems. J. Comput. Phys. 241, 333–363 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bushuk, M., Yang, X., Winton, M., Msadek, R., Harrison, M., Rosati, A., Gudgel, R.: The value of sustained ocean observations for sea ice predictions in the barents sea. J. Clim. 32(20), 7017–7035 (2019)

    Article  Google Scholar 

  7. Casdagli, M.: Nonlinear prediction of chaotic time series. Physica D 35(3), 335–356 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavanaugh, N.R., Gershunov, A., Panorska, A.K., Kozubowski, T.J.: The probability distribution of intense daily precipitation. Geophys. Res. Lett. 42(5), 1560–1567 (2015)

    Article  Google Scholar 

  9. Charney, J.G., DeVore, J.G.: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36(7), 1205–1216 (1979)

    Article  Google Scholar 

  10. Chen, N.: Learning nonlinear turbulent dynamics from partial observations via analytically solvable conditional statistics. J. Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.2020.109635

    Article  MathSciNet  Google Scholar 

  11. Chen, N., Giannakis, D., Herbei, R., Majda, A.J.: An MCMC algorithm for parameter estimation in signals with hidden intermittent instability. SIAM/ASA J. Uncertain. Quant. 2(1), 647–669 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, N., Majda, A.: Conditional Gaussian systems for multiscale nonlinear stochastic systems: prediction, state estimation and uncertainty quantification. Entropy 20(7), 509 (2018)

    Article  Google Scholar 

  13. Chen, N., Majda, A.: Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series. Chaos Interdiscip. J. Nonlinear Sci. 30(3), 033101 (2020). https://doi.org/10.1063/1.5122199

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, N., Majda, A.J.: Predicting the cloud patterns for the boreal summer intraseasonal oscillation through a low-order stochastic model. Math. Clim. Weather Forecast. 1(1), 1–20 (2015)

    MATH  Google Scholar 

  15. Chen, N., Majda, A.J.: Predicting the real-time multivariate Madden–Julian oscillation index through a low-order nonlinear stochastic model. Mon. Weather Rev. 143(6), 2148–2169 (2015)

    Article  Google Scholar 

  16. Chen, N., Majda, A.J.: Filtering nonlinear turbulent dynamical systems through conditional Gaussian statistics. Mon. Weather Rev. 144(12), 4885–4917 (2016)

    Article  Google Scholar 

  17. Chen, N., Majda, A.J.: Filtering the stochastic skeleton model for the Madden–Julian oscillation. Mon. Weather Rev. 144(2), 501–527 (2016)

    Article  Google Scholar 

  18. Chen, N., Majda, A.J.: Model error in filtering random compressible flows utilizing noisy Lagrangian tracers. Mon. Weather Rev. 144(11), 4037–4061 (2016)

    Article  Google Scholar 

  19. Chen, N., Majda, A.J.: Beating the curse of dimension with accurate statistics for the Fokker–Planck equation in complex turbulent systems. Proc. Natl. Acad. Sci. 114(49), 12864–12869 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, N., Majda, A.J.: Efficient statistically accurate algorithms for the Fokker–Planck equation in large dimensions. J. Comput. Phys. 354, 242–268 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, N., Majda, A.J.: Efficient nonlinear optimal smoothing and sampling algorithms for complex turbulent nonlinear dynamical systems with partial observations. J. Comput. Phys. 410, 109381 (2020)

  22. Chen, N., Majda, A.J., Giannakis, D.: Predicting the cloud patterns of the Madden–Julian oscillation through a low-order nonlinear stochastic model. Geophys. Res. Lett. 41(15), 5612–5619 (2014)

    Article  Google Scholar 

  23. Chen, N., Majda, A.J., Sabeerali, C., Ajayamohan, R.: Predicting monsoon intraseasonal precipitation using a low-order nonlinear stochastic model. J Clim 31, 4403–4427 (2018)

    Article  Google Scholar 

  24. Chen, N., Majda, A.J., Tong, X.T.: Information barriers for noisy Lagrangian tracers in filtering random incompressible flows. Nonlinearity 27(9), 2133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, N., Majda, A.J., Tong, X.T.: Noisy Lagrangian tracers for filtering random rotating compressible flows. J. Nonlinear Sci. 25(3), 451–488 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, N., Majda, A.J., Tong, X.T.: Rigorous analysis for efficient statistically accurate algorithms for solving Fokker–Planck equations in large dimensions. SIAM/ASA J. Uncertain. Quant. 6(3), 1198–1223 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cole, J., Barker, H.W., Randall, D., Khairoutdinov, M., Clothiaux, E.E.: Global consequences of interactions between clouds and radiation at scales unresolved by global climate models. Geophys. Res. Lett. 32(6), 06703 (2005)

  28. Cousins, W., Sapsis, T.P.: Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model. Physica D 280, 48–58 (2014)

    Article  MATH  Google Scholar 

  29. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  30. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  31. Farazmand, M., Sapsis, T.P.: Extreme events: mechanisms and prediction. Appl. Mech. Rev. 71(5), 050801 (2019)

  32. Franzke, C., Crommelin, D., Fischer, A., Majda, A.J.: A hidden Markov model perspective on regimes and metastability in atmospheric flows. J. Clim. 21(8), 1740–1757 (2008)

    Article  Google Scholar 

  33. Gardiner, C.W.: Handbook of stochastic methods for physics. In: Chemistry and the Natural Sciences, vol. 13 of Springer Series in Synergetics (2004)

  34. Gardiner, C.W., et al.: Handbook of Stochastic Methods, vol. 3. Springer, Berlin (1985)

    Google Scholar 

  35. Gershgorin, B., Harlim, J., Majda, A.J.: Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation. J. Comput. Phys. 229(1), 32–57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gershgorin, B., Harlim, J., Majda, A.J.: Test models for improving filtering with model errors through stochastic parameter estimation. J. Comput. Phys. 229(1), 1–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ghahramani, Z., Hinton, G.E.: Parameter estimation for linear dynamical systems. In: Technical Report CRG-TR-96-2, University of Totronto, Department of Computer Science (1996)

  38. Ghahramani, Z., Roweis, S.T.: Learning nonlinear dynamical systems using an em algorithm. In: Advances in neural information processing systems, pp. 431–437 (1999)

  39. Giannakis, D., Majda, A.J., Horenko, I.: Information theory, model error, and predictive skill of stochastic models for complex nonlinear systems. Physica D 241(20), 1735–1752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Harlim, J., Mahdi, A., Majda, A.J.: An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models. J. Comput. Phys. 257, 782–812 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hendon, H.H., Lim, E., Wang, G., Alves, O., Hudson, D.: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett. 36(19), 19713 (2009)

  42. Hewitt, G., Vassilicos, C., et al.: Prediction of Turbulent Flows. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  43. Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126(3), 796–811 (1998)

    Article  Google Scholar 

  44. Ito, K., Ravindran, S.S.: A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143(2), 403–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Janjić, T., Bormann, N., Bocquet, M., Carton, J., Cohn, S., Dance, S., Losa, S., Nichols, N., Potthast, R., Waller, J., et al.: On the representation error in data assimilation. Quart. J. R. Meteorol. Soc. (2017)

  46. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  47. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. Basic Eng. 83(1), 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  48. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  49. Keating, S.R., Majda, A.J., Smith, K.S.: New methods for estimating ocean eddy heat transport using satellite altimetry. Mon. Weather Rev. 140(5), 1703–1722 (2012)

    Article  Google Scholar 

  50. Keating, S.R., Smith, K.S., Kramer, P.R.: Diagnosing lateral mixing in the upper ocean with virtual tracers: spatial and temporal resolution dependence. J. Phys. Oceanogr. 41(8), 1512–1534 (2011)

    Article  Google Scholar 

  51. Kim, H.M., Webster, P.J., Curry, J.A.: Seasonal prediction skill of ECMWF system 4 and NCEP CFSv2 retrospective forecast for the northern hemisphere winter. Clim. Dyn. 39(12), 2957–2973 (2012)

    Article  Google Scholar 

  52. Kim, H.M., Webster, P.J., Toma, V.E., Kim, D.: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Clim. 27(14), 5364–5378 (2014)

    Article  Google Scholar 

  53. Kleeman, R.: Information theory and dynamical system predictability. Entropy 13(3), 612–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kloeden, P.E., Platen, E.: Higher-order implicit strong numerical schemes for stochastic differential equations. J. Stat. Phys. 66(1–2), 283–314 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kullback, S.: Statistics and Information Theory. Wiley, New York (1959)

    MATH  Google Scholar 

  56. Kullback, S.: Letter to the editor: The Kullback–Leibler distance. American Statistician (1987)

  57. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kumar, A.: Finite samples and uncertainty estimates for skill measures for seasonal prediction. Mon. Weather Rev. 137(8), 2622–2631 (2009)

    Article  Google Scholar 

  59. Kunisch, K., Volkwein, S.: Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102(2), 345–371 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lahoz, W., Khattatov, B., Ménard, R.: Data assimilation and information. In: Data Assimilation, pp. 3–12. Springer (2010)

  61. Law, K., Stuart, A., Zygalakis, K.: Data Assimilation: A Mathematical Introduction, vol. 62. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  62. Lee, C.Y., Tippett, M.K., Sobel, A.H., Camargo, S.J.: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun. 7, 10625 (2016)

    Article  Google Scholar 

  63. Leith, C.: Predictability of climate. Nature 276(5686), 352–355 (1978)

    Article  Google Scholar 

  64. Lermusiaux, P.F.: Data assimilation via error subspace statistical estimation. Part II: middle atlantic bight shelfbreak front simulations and ESSE validation. Mon. Weather Rev. 127(7), 1408–1432 (1999)

    Article  Google Scholar 

  65. Liptser, R.S., Shiryaev, A.N.: Statistics of random processes II: applications. Appl. Math 6 (2001)

  66. Lorenc, A.C.: Analysis methods for numerical weather prediction. Quart. J. R. Meteorol. Soc. 112(474), 1177–1194 (1986)

    Article  Google Scholar 

  67. Lorenz, E.N.: Energy and numerical weather prediction. Tellus 12(4), 364–373 (1960)

    Article  Google Scholar 

  68. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  69. Lorenz, E.N.: Section of planetary sciences: the predictability of hydrodynamic flow. Trans. N. Y. Acad. Sci. 25(4 Series II), 409–432 (1963)

    Article  Google Scholar 

  70. Lorenz, E.N.: Predictability: a problem partly solved. In: Proceedings of the Seminar on predictability, vol. 1 (1996)

  71. Majda, A., Chen, N.: Model error, information barriers, state estimation and prediction in complex multiscale systems. Entropy 20(9), 644 (2018)

    Article  MathSciNet  Google Scholar 

  72. Majda, A., Wang, X.: Nonlinear dynamics and statistical theories for basic geophysical flows. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  73. Majda, A.J.: Challenges in climate science and contemporary applied mathematics. Commun. Pure Appl. Math. 65(7), 920–948 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Majda, A.J.: Introduction to Turbulent Dynamical Systems in Complex Systems. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  75. Majda, A.J., Abramov, R., Gershgorin, B.: High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability. Proc. Natl. Acad. Sci. 107(2), 581–586 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Majda, A.J., Franzke, C., Crommelin, D.: Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. 106(10), 3649–3653 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  77. Majda, A.J., Franzke, C., Khouider, B.: An applied mathematics perspective on stochastic modelling for climate. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1875), 2427–2453 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  78. Majda, A.J., Gershgorin, B.: Quantifying uncertainty in climate change science through empirical information theory. Proc. Natl. Acad. Sci. 107(34), 14958–14963 (2010)

    Article  Google Scholar 

  79. Majda, A.J., Gershgorin, B.: Improving model fidelity and sensitivity for complex systems through empirical information theory. Proc. Natl. Acad. Sci. 108(25), 10044–10049 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  80. Majda, A.J., Gershgorin, B.: Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Natl. Acad. Sci. 108(31), 12599–12604 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. Majda, A.J., Grooms, I.: New perspectives on superparameterization for geophysical turbulence. J. Comput. Phys. 271, 60–77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  82. Majda, A.J., Harlim, J.: Filtering Complex Turbulent Systems. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  83. Majda, A.J., Harlim, J.: Physics constrained nonlinear regression models for time series. Nonlinearity 26(1), 201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  84. Majda, A.J., Qi, D.: Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems. SIAM Rev. 60(3), 491–549 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  85. Majda, A.J., Qi, D., Sapsis, T.P.: Blended particle filters for large-dimensional chaotic dynamical systems. Proc. Natl. Acad. Sci. 111, 7511–7516 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  86. Majda, A.J., Timofeyev, I., Eijnden, E.V.: Models for stochastic climate prediction. Proc. Natl. Acad. Sci. 96(26), 14687–14691 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  87. Massonnet, F., Fichefet, T., Goosse, H.: Prospects for improved seasonal arctic sea ice predictions from multivariate data assimilation. Ocean Model. 88, 16–25 (2015)

    Article  Google Scholar 

  88. Molteni, F., Buizza, R., Palmer, T.N., Petroliagis, T.: The ECMWF ensemble prediction system: methodology and validation. Quart. J. R. Meteorol. Soc. 122(529), 73–119 (1996)

    Article  Google Scholar 

  89. Oke, P.R., Sakov, P.: Representation error of oceanic observations for data assimilation. J. Atmos. Ocean. Technol. 25(6), 1004–1017 (2008)

    Article  Google Scholar 

  90. Palmer, T.: The ECMWF ensemble prediction system: looking back (more than) 25 years and projecting forward 25 years. Quart. J. R. Meteoro. Soc. 145, 12–24 (2019)

    Article  Google Scholar 

  91. Qi, D., Majda, A.J.: Predicting fat-tailed intermittent probability distributions in passive scalar turbulence with imperfect models through empirical information theory. Commun. Math. Sci. 14(6), 1687–1722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  92. Qi, D., Majda, A.J.: Low-dimensional reduced-order models for statistical response and uncertainty quantification: barotropic turbulence with topography. Physica D 343, 7–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  93. Rauch, H.E., Striebel, C., Tung, F.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3(8), 1445–1450 (1965)

    Article  MathSciNet  Google Scholar 

  94. Rodrigues, R.R., Subramanian, A., Zanna, L., Berner, J.: Enso bimodality and extremes. Geophys. Res. Lett. 46(9), 4883–4893 (2019)

    Article  Google Scholar 

  95. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998)

    Google Scholar 

  96. Sapsis, T.P., Majda, A.J.: Blending modified Gaussian closure and non-gaussian reduced subspace methods for turbulent dynamical systems. J. Nonlinear Sci. 23(6), 1039–1071 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  97. Simonoff, J.S.: Smoothing Methods in Statistics. Springer, Berlin (2012)

    MATH  Google Scholar 

  98. Slingo, J., Palmer, T.: Uncertainty in weather and climate prediction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1956), 4751–4767 (2011)

    Article  MATH  Google Scholar 

  99. Sundberg, R.: Maximum likelihood theory for incomplete data from an exponential family. Scand. J. Stat. 1(2), 49–58 (1974)

  100. Sundberg, R.: An iterative method for solution of the likelihood equations for incomplete data from exponential families. Commun. Stat. Simul. Comput. 5(1), 55–64 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  101. Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001)

    Article  Google Scholar 

  102. Toth, Z., Kalnay, E.: Ensemble forecasting at ncep and the breeding method. Mon. Weather Rev. 125(12), 3297–3319 (1997)

    Article  Google Scholar 

  103. Tribbia, J., Baumhefner, D.: Scale interactions and atmospheric predictability: an updated perspective. Mon. Weather Rev. 132(3), 703–713 (2004)

    Article  Google Scholar 

  104. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  105. Vidard, A., Anderson, D.L., Balmaseda, M.: Impact of ocean observation systems on ocean analysis and seasonal forecasts. Mon. Weather Rev. 135(2), 409–429 (2007)

    Article  Google Scholar 

  106. Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Comput. Methods Appl. Mech. Eng. 237, 10–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  107. Weigel, A.P., Liniger, M.A., Appenzeller, C.: The discrete brier and ranked probability skill scores. Mon. Weather Rev. 135(1), 118–124 (2007)

    Article  Google Scholar 

  108. Wiin-Nielsen, A.: Steady states and stability properties of a low-order barotropic system with forcing and dissipation. Tellus 31(5), 375–386 (1979)

    Article  MathSciNet  Google Scholar 

  109. Xie, X., Mohebujjaman, M., Rebholz, L.G., Iliescu, T.: Data-driven filtered reduced order modeling of fluid flows. SIAM J. Sci. Comput. 40(3), B834–B857 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  110. Zhang, C., Mapes, B.E., Soden, B.J.: Bimodality in tropical water vapour. Quart. J. R. Meteorol. Soc. A J. Atmo. Sci. Appl. Meteorol. Phys. Oceanogr. 129(594), 2847–2866 (2003)

    Google Scholar 

  111. Zhang, F., Sun, Y.Q., Magnusson, L., Buizza, R., Lin, S.J., Chen, J.H., Emanuel, K.: What is the predictability limit of midlatitude weather? J. Atmos. Sci. 76(4), 1077–1091 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The research of N.C. is supported by the Office of Vice Chancellor for Research and Graduate Education (VCRGE) at University of Wisconsin–Madison and the Office of Naval Research (ONR) MURI N00014-19-1-2421. N.C. thanks Dr. Andrew J. Majda for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 An expectation–maximization algorithm for learning nonlinear models with partial observations

For the simplicity of discussion, define \(\widehat{{\mathbf {u}}}_{\mathbf {I}}=\{{\mathbf {u}}_{\mathbf {I}}^0, \ldots , {\mathbf {u}}_{\mathbf {I}}^j,\ldots , {\mathbf {u}}_{\mathbf {I}}^J\}\) and \(\widehat{{\mathbf {u}}}_\mathbf {II} = \{{\mathbf {u}}_\mathbf {II}^0, \ldots , {\mathbf {u}}_\mathbf {II}^j,\ldots , {\mathbf {u}}_\mathbf {II}^J\}\), where \({\mathbf {u}}_{\mathbf {I}}^j := {\mathbf {u}}_{\mathbf {I}}(t_j)\) and \({\mathbf {u}}_\mathbf {II}^j={\mathbf {u}}_\mathbf {II}(t_j)\). In other words, the values of \({\mathbf {u}}_{\mathbf {I}}\) and \({\mathbf {u}}_\mathbf {II}\) are taken at discrete points in time \({\mathbf {u}}_{\mathbf {I}}(t_j)\) and \({\mathbf {u}}_\mathbf {II}(t_j)\), for \(j = 0,1,\ldots ,J\), where \(T=J\varDelta {t}\) is the total length of the time series and \(\varDelta {t}\ll 1\). This can be achieved by applying an Euler–Maruyama scheme [33, 54] to the continuous system and discretizing the observational data as well.

Given an ansatz of the conditional Gaussian nonlinear model (6) with observed variables \({\mathbf {u}}_{\mathbf {I}}\) and unobserved variables \({\mathbf {u}}_\mathbf {II}\), the goal here is to maximize the objective function, which is the log likelihood,

$$\begin{aligned} {\mathcal {L}}(\varvec{\theta }) = \log p(\widehat{{\mathbf {u}}}_{\mathbf {I}}|\varvec{\theta }) = \log \int _{\widehat{{\mathbf {u}}}_\mathbf {II}} p (\widehat{{\mathbf {u}}}_{\mathbf {I}},\widehat{{\mathbf {u}}}_\mathbf {II}|\varvec{\theta }){\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II}, \end{aligned}$$
(57)

where \(\varvec{\theta }\) is the collection of model parameters.

Using any distribution \(Q(\widehat{{\mathbf {u}}}_\mathbf {II})\) over the hidden variables, a lower bound on the likelihood \({\mathcal {L}}\) can be obtained in the following way [38];

$$\begin{aligned} \log \int _{\widehat{{\mathbf {u}}}_\mathbf {II}} p(\widehat{{\mathbf {u}}}_{\mathbf {I}},\widehat{{\mathbf {u}}}_\mathbf {II}|\varvec{\theta }){\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II}= & {} \log \int _{\widehat{{\mathbf {u}}}_\mathbf {II}} Q(\widehat{{\mathbf {u}}}_\mathbf {II}) \frac{p(\widehat{{\mathbf {u}}}_{\mathbf {I}},\widehat{{\mathbf {u}}}_\mathbf {II}|\varvec{\theta })}{Q(\widehat{{\mathbf {u}}}_\mathbf {II})}{\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II}\nonumber \\\ge & {} \int _{\widehat{{\mathbf {u}}}_\mathbf {II}} Q(\widehat{{\mathbf {u}}}_\mathbf {II}) \log \frac{p(\widehat{{\mathbf {u}}}_{\mathbf {I}},\widehat{{\mathbf {u}}}_\mathbf {II}|\varvec{\theta })}{Q(\widehat{{\mathbf {u}}}_\mathbf {II})}{\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II}\nonumber \\= & {} \int _{\widehat{{\mathbf {u}}}_\mathbf {II}} Q(\widehat{{\mathbf {u}}}_\mathbf {II}) \log p(\widehat{{\mathbf {u}}}_{\mathbf {I}},\widehat{{\mathbf {u}}}_\mathbf {II}|\varvec{\theta }){\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II} \\&- \int _{\widehat{{\mathbf {u}}}_\mathbf {II}} Q(\widehat{{\mathbf {u}}}_\mathbf {II}) \log Q(\widehat{{\mathbf {u}}}_\mathbf {II}){\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II}\nonumber \\:= & {} {\mathcal {F}}(Q,\varvec{\theta }),\nonumber \end{aligned}$$
(58)

where the negative value of \(\int _{\widehat{{\mathbf {u}}}_\mathbf {II}} Q(\widehat{{\mathbf {u}}}_\mathbf {II}) \log p(\widehat{{\mathbf {u}}}_{\mathbf {I}},\widehat{{\mathbf {u}}}_\mathbf {II}|\varvec{\theta }){\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II}\) is the so-called free energy, while \(-\int _{\widehat{{\mathbf {u}}}_\mathbf {II}} Q(\widehat{{\mathbf {u}}}_\mathbf {II}) \log Q(\widehat{{\mathbf {u}}}_\mathbf {II}){\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II}\) is the entropy. Therefore, based on the fact \({\mathcal {F}}(Q,\varvec{\theta })\le {\mathcal {L}}(\varvec{\theta })\), it is clear that maximizing the log likelihood is equivalent to maximizing \({\mathcal {F}}\) alternatively with respect to the distribution Q and the parameters \(\varvec{\theta }\). This can be achieved by the expectation–maximization (EM) algorithm [29, 99, 100],

$$\begin{aligned} \text{ E-Step: }&\qquad Q_{k+1}\leftarrow \arg \max _{Q}{\mathcal {F}}(Q,\varvec{\theta }_k), \end{aligned}$$
(59a)
$$\begin{aligned} \text{ M-Step: }&\qquad \varvec{\theta }_{k+1}\leftarrow \arg \max _{\varvec{\theta }}{\mathcal {F}}(Q_{k+1},\varvec{\theta }). \end{aligned}$$
(59b)

The maximization in the E-Step is reached when Q is exactly the conditional distribution of \(\widehat{{\mathbf {u}}}_\mathbf {II}\) corresponding to the smoother estimates, that is,

$$\begin{aligned} Q_{k+1}(\widehat{{\mathbf {u}}}_\mathbf {II}) = p(\widehat{{\mathbf {u}}}_\mathbf {II}|\widehat{{\mathbf {u}}}_{\mathbf {I}},\varvec{\theta }_k). \end{aligned}$$
(60)

In such a situation, the bound in (58) becomes an equality \({\mathcal {F}}(Q,\varvec{\theta })={\mathcal {L}}(\varvec{\theta })\). Note that the conditional distribution in the E-Step is very difficult to solve for general nonlinear systems. Various numerical methods and approximations are often used [37, 38], which however may suffer from both the approximation errors and the curse of dimensionality. Nevertheless, for the conditional Gaussian systems, the distribution \(p(\widehat{{\mathbf {u}}}_\mathbf {II}|\widehat{{\mathbf {u}}}_{\mathbf {I}},\varvec{\theta }_k)\) is given by the closed analytic formulae of the nonlinear smoother in Theorem 2, which greatly facilitates the application of the EM algorithm to many nonlinear models.

On the other hand, since the entropy (the second term on the right hand side of (58)) does not depend on \(\varvec{\theta }\), the maximum in the M-Step is obtained by maximizing the negative of the free energy

$$\begin{aligned} \varvec{\theta }_{k+1}\leftarrow \arg \max _{\varvec{\theta }}\int _{\widehat{{\mathbf {u}}}_\mathbf {II}} p(\widehat{{\mathbf {u}}}_\mathbf {II}|\widehat{{\mathbf {u}}}_{\mathbf {I}},\varvec{\theta }_k) \log p(\widehat{{\mathbf {u}}}_{\mathbf {I}},\widehat{{\mathbf {u}}}_\mathbf {II}|\varvec{\theta }){\, \mathrm d}\widehat{{\mathbf {u}}}_\mathbf {II}. \end{aligned}$$
(61)

1.2 Parameter estimation of fully observed systems

This appendix provides more details of Step 4 of Sect. 5.1. Now assume a sampled trajectory of the unobserved variables \({\mathbf {u}}_\mathbf {II}\) is available. Assume after certain combination, the parameters only appear as prefactor coefficients in front of the nonlinear terms of the system. Therefore, the equation of \({\mathbf {u}}_\mathbf {II}\) can be rewritten as

$$\begin{aligned} {\, \mathrm d}{\mathbf {u}}_\mathbf {II} = {\mathbf {M}}({\mathbf {u}}_{\mathbf {I}},{\mathbf {u}}_\mathbf {II})\varvec{\theta }{\, \mathrm d}t + \text{ noise }, \end{aligned}$$
(62)

where \({\mathbf {M}}({\mathbf {u}}_{\mathbf {I}},{\mathbf {u}}_\mathbf {II})\) contains all the nonlinear functions that depend on \({\mathbf {u}}_{\mathbf {I}}\) and conditionally linear on \({\mathbf {u}}_\mathbf {II}\) as in the original equation. The noise coefficients are provided by the EM algorithm and are not updated here. The collection of the parameters \(\varvec{\theta }\) can be estimated via a least squares estimator,

$$\begin{aligned} \varvec{\theta }= \left( \sum _j{\mathbf {M}}^*(t_j){\mathbf {M}}(t_j)\right) ^{-1}\left( \sum _j{\mathbf {M}}^*(t_j)\frac{{\, \mathrm d}{\mathbf {u}}_\mathbf {II}}{{\, \mathrm d}t}(t_j)\right) \end{aligned}$$
(63)

where \(t_j\) represents discrete time instants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N. Improving the prediction of complex nonlinear turbulent dynamical systems using nonlinear filter, smoother and backward sampling techniques. Res Math Sci 7, 18 (2020). https://doi.org/10.1007/s40687-020-00216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-020-00216-5

Keywords

Navigation