Skip to main content
Log in

Synergistic Mechanical Reinforcement of Woven Carbon Fiber/Polypropylene Composites Using Plasma Treatment and Nanoclay

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Polypropylene (PP) nanocomposite films reinforced with surface-modified nanoclay, maleic anhydride-grafted PP (PP-g-MA), and surfactants, such as cetyl-trimethyl-ammonium bromide (CTAB) and octadecyl-trimethyl-ammonium bromide (ODAB), were fabricated by extrusion, and the effect of surfactant type used for the nanoclay and the take-up speed of extrusion on the mechanical properties and crystallinity of the nanocomposite films were investigated. Multi-scale hybrid composites (MHCs) consisting of plasma-treated plain woven carbon fiber (WCF) and nanocomposite films were manufactured by hot pressing. Flexural and impact tests were performed to measure the mechanical properties at various plasma treatment times. Scanning electron microscopy and X-ray photoelectron spectroscopy (XPS) were used to observe the surface morphology and detect polar functional groups, respectively. Results of XPS analysis showed a considerable increase in the oxygen atomic percentage after plasma treatment. The mechanical properties of the MHCs were greatly affected by the presence of nanoclay in the composite and the plasma treatment. The flexural modulus and strength, impact force, and absorbed impact energy of the MHC specimens treated with plasma (15 s) and reinforced with nanoclay/ODAB(5:1, 1.5 wt%) and PP-g-MA(3 wt%), increased by 69, 87, 49 and 54%, respectively, compared to the neat non-plasma-treated WCF/PP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Eller, B. (2009) Automotive thermoplastic composite industry structure and new technologies respond to a global recession. In: Paper presented at: SPE Automotive Composites Conference; Sep 15, 2009; Detroit, MI.

  2. Soutis, C. (2005). Carbon fiber reinforced plastics in aircraft construction. Materials Science and Engineering A, 412(1-2), 171–176.

    Google Scholar 

  3. Rezaei, F., Yunus, R., Ibrahim, N. A., & Mahdi, E. S. (2008). Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polymer-Plastics Technology and Engineering, 47(4), 351–357.

    Google Scholar 

  4. Garate, J., Solovitz, S. A., & Kim, D. (2018). Fabrication and performance of segmented thermoplastic composite wind turbine blades. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 271–277.

    Google Scholar 

  5. Mastura, M. T., Sapuan, S. M., Mansor, M. R., & Nuraini, A. A. (2018). Materials selection of thermoplastic matrices for ‘green’ natural fibre composites for automotive anti-roll bar with particular emphasis on the environment. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 111–119.

    Google Scholar 

  6. Chen, W., Tao, X. M., & Liu, Y. Y. (2006). Carbon nanotube-reinforced polyurethane composite fibers. Composites Science and Technology, 66(15), 3029–3034.

    Google Scholar 

  7. Lee, C.-K., & Cho, H.-K. (2015). Nano-Composite manufacturing using the electro-orientation method of micro/nano-particles in a liquid polymer with mechanical characteristics analysis. International Journal of Precision Engineering and Manufacturing, 16(2), 379–384.

    Google Scholar 

  8. Joo, S.-J., Yu, M.-H., Kim, W. S., & Kim, H.-S. (2018). Damage detection and self-healing of carbon fiber polypropylene (CFPP)/carbon nanotube (CNT) nano-composite via addressable conducting network. Composites Science and Technology, 167, 62–70.

    Google Scholar 

  9. Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composites Science and Technology, 67(10), 2045–2051.

    Google Scholar 

  10. Pedrazzoli, D., & Pegoretti, A. (2014). Expanded graphite nanoplatelets as coupling agents in glass fiber reinforced polypropylene composites. Composites: Part A, 66, 25–34.

    Google Scholar 

  11. Young, R. J., Kinloch, I. A., Gong, L., & Novoselov, K. S. (2012). The mechanics of graphene nanocomposites: a review. Composites Science and Technology, 72(12), 1459–1476.

    Google Scholar 

  12. Penkov, O., Kim, H. J., Kim, H. J., & Kim, D. E. (2014). Tribology of graphene: A review. International Journal of Precision Engineering and Manufacturing, 15(3), 577–585.

    Google Scholar 

  13. Castillo, L., Lopez, O., Lopez, C., et al. (2013). Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95(2), 664–674.

    Google Scholar 

  14. Faruk, O., & Matuana, L. M. (2008). Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Composites Science and Technology, 68(9), 2073–2077.

    Google Scholar 

  15. Golebiewski, J., & Galeski, A. (2007). Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA. Composites Science and Technology, 67(15-16), 3442–3447.

    Google Scholar 

  16. Hamidi, Y. K., Aktas, L., & Altan, M. C. (2008). Effect of nanoclay content on void morphology in resin transfer molded composites. Journal of Thermoplastic Composite Materials, 21(2), 141–163.

    Google Scholar 

  17. Isitman, N. A., Aykol, M., & Kaynak, C. (2010). Nanoclay assisted strengthening of the fiber/matrix interface in functionally filled polyamide 6 composites. Composite Structures, 92(9), 2181–2186.

    Google Scholar 

  18. Pattanayak, A., & Jana, S. C. (2005). High-strength and low-stiffness composites of nanoclay-filled thermoplastic polyurethanes. Polymer Engineering and Science, 45(11), 1532–1539.

    Google Scholar 

  19. Pumera, M. (2011). Graphene-based nanomaterials for energy storage. Energy and Environmental Science, 4(3), 668–674.

    Google Scholar 

  20. Kashiwagi, T., Harris, R. H., Zhang, X., et al. (2004). Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer, 45(3), 881–891.

    Google Scholar 

  21. Shah, A. U. R., Prabhakar, M. N., & Song, J. I. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites—A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 247–262.

    Google Scholar 

  22. Jagadish, P. R., Khalid, M., Li, L. P., et al. (2018). Cost effective thermoelectric composites from recycled carbon fibre: from waste to energy. Journal of Cleaner Production, 195, 1015–1025.

    Google Scholar 

  23. Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70(5), 703–718.

    Google Scholar 

  24. Modesti, M., Lorenzetti, A., Bon, D., & Besco, S. (2006). Thermal behaviour of compatibilised polypropylene nanocomposite: effect of processing conditions. Polymer Degradation and Stability, 91(4), 672–680.

    Google Scholar 

  25. Razavi-Nouri, M., Ghorbanzadeh-Ahangari, M., Fereidoon, A., & Jahanshahi, M. (2009). Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polymer Testing, 28(1), 46–52.

    Google Scholar 

  26. Kim, B. J., Deka, B. K., Bae, I. J., Choi, D. H., Son, D. I., & Park, Y. B. (2018). Unidirectional spread-tow carbon fiber/polypropylene composites reinforced with mechanically aligned multi-walled carbon nanotubes and exfoliated graphite nanoplatelets. Polymer Composites, 39, E1251–E1261.

    Google Scholar 

  27. Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39.

    Google Scholar 

  28. Zazoum, B., David, E., & Ngô, A. D. (2013). LDPE/HDPE/Clay nanocomposites: Effects of compatibilizer on the structure and dielectric response. Journal of Nanotechnology, 2013, 1–10.

    Google Scholar 

  29. Frida, E., Bukit, N., & Bukit, B. F. (2014). Natural zeolite modification with a surfactant Cetyl trimethyl ammonium bromide (Ctab) as material to filler in polypropylene. Chemistry and Materials Research, 6(6), 34–41.

    Google Scholar 

  30. Karian, H. (2003). Handbook of polypropylene and polypropylene composites, revised and expanded. Boca Raton: CRC Press.

    Google Scholar 

  31. Li, J. (2009). The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber. Applied Surface Science, 255(20), 8682–8684.

    Google Scholar 

  32. Andideh, M., & Esfandeh, M. (2016). Statistical optimization of treatment conditions for the electrochemical oxidation of PAN-based carbon fiber by response surface methodology: Application to carbon fiber/epoxy composite. Composites Science and Technology, 134, 132–143.

    Google Scholar 

  33. Zhang, T., Song, Y. X., Zhao, Y. Q., & Zhang, B. M. (2018). Effect of hybrid sizing with nano-SiO2 on the interfacial adhesion of carbon fibers/nylon 6 composites. Colloids and Surfaces A, 553, 125–133.

    Google Scholar 

  34. Kim, B. J., Cha, S. H., Kong, K., Ji, W., Park, H. W., & Park, Y. B. (2018). Synergistic interfacial reinforcement of carbon fiber/polyamide 6 composites using carbon-nanotube-modified silane coating on ZnO-nanorod-grown carbon fiber. Composites Science and Technology, 165, 362–372.

    Google Scholar 

  35. Deka, B. K., Kong, K., Park, Y. B., & Park, H. W. (2014). Large pulsed electron beam (LPEB)-processed woven carbon fiber/ZnO nanorod/polyester resin composites. Composites Science and Technology, 102, 106–112.

    Google Scholar 

  36. Lee, H., Ohsawa, I., & Takahashi, J. (2015). Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties. Applied Surface Science, 328, 241–246.

    Google Scholar 

  37. Tang, L. G., & Kardos, J. L. (1997). A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polymer Composites, 18(1), 100–113.

    Google Scholar 

  38. Kale, K. H., & Desai, A. N. (2011). Atmospheric pressure plasma treatment of textiles using non-polymerising gases. Indian Journal of Fibre and Textile, 36(3), 289–299.

    Google Scholar 

  39. Rauwendaal, C. (2014). Polymer extrusion 5E. München: HANSER.

    Google Scholar 

  40. Campoy, I., Gomez, M. A., & Marco, C. (1998). Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer, 39(25), 6279–6288.

    Google Scholar 

  41. Shi, K. H., Ye, L., & Li, G. X. (2015). Structure and hydrothermal stability of highly oriented polyamide 6 produced by solid hot stretching. RSC Advances, 5(38), 30160–30169.

    Google Scholar 

  42. Wagner, J. R., & Giles, H. E. (2013). Solidification and cooling extrusion: the definitive processing guide and handbook (pp. 9–10). New York: William Andrew.

    Google Scholar 

  43. Tong, Z. H., & Deng, Y. L. (2006). Synthesis of water-based polystyrene-nanoclay composite suspension via miniemulsion polymerization. Industrial and Engineering Chemistry Research, 45(8), 2641–2645.

    Google Scholar 

  44. Xie, J., Xin, D., Cao, H., et al. (2011). Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment. Surface and Coatings Technology, 206(2-3), 191–201.

    Google Scholar 

  45. Dai, Z. S., Zhang, B. Y., Shi, F. H., Li, M., Zhang, Z. G., & Gu, Y. Z. (2011). Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Applied Surface Science, 257(20), 8457–8461.

    Google Scholar 

  46. Han, S.-H., Oh, H.-J., & Kim, S.-S. (2014). Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites. Composites: Part B, 60, 98–105.

    Google Scholar 

  47. Hosur, M. V., Chowdhury, F., & Jeelani, S. (2007). Low-velocity impact response and ultrasonic NDE of woven carbon/epoxy—nanoclay nanocomposites. Journal of Composite Materials, 41(18), 2195–2212.

    Google Scholar 

  48. Mahdi, T. H., Islam, M. E., Hosur, M. V., & Jeelani, S. (2017). Low-velocity impact performance of carbon fiber-reinforced plastics modified with carbon nanotube, nanoclay and hybrid nanoparticles. Journal of Reinforced Plastics and Composites, 36(9), 696–713.

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT, Korea (NRF-2017R1A5A1015311), and the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade Industry and Energy (MOTIE) (No. 20174030201430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Bin Park.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BJ., Deka, B.K., Joung, C. et al. Synergistic Mechanical Reinforcement of Woven Carbon Fiber/Polypropylene Composites Using Plasma Treatment and Nanoclay. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 595–609 (2021). https://doi.org/10.1007/s40684-020-00206-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00206-6

Keywords

Navigation