Skip to main content
Log in

Controlled phase separation in flexible polyurethane foams with diethanolamine cross-linker for improved sound absorption efficiency

  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

For comfortable driving conditions, flexible polyurethane (PU) foams are used for sound absorbers in noise, vibration, harshness (NVH) systems. The cellular structures of PU foams are important to improve the sound absorption efficiency, and the cell morphology is strongly dependent the use of experimental ingredients such as catalysts and cross-linking agents. Uniform cavity size distribution is achieved by controlling the catalyst ratio between gelling and blowing catalysts, and the optimum catalyst ratio (9:1) is used with a diethanolamine (DEA) cross-linker for improved sound absorption efficiency. DEA affects pore morphology by preventing phase separation in PU matrix, and the number of open pores reduces with increasing DEA contents. Sound absorption coefficient shows the highest at 9:1 catalyst ratio and 0.9 g DEA usage in the flexible PU foams under disturbed phase separation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, C., Li, J., Hu, Z., Zhu, F., and Huang, Y., “Correlation between the Acoustic and Porous Cell Morphology of Polyurethane Foam: Effect of Interconnected Porosity,” Materials & Design, Vol. 41, pp. 319–325, 2012.

    Article  Google Scholar 

  2. Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B., and Naik, Y., “Effect of Foam Density on the Properties of Water Blown Rigid Polyurethane Foam,” Journal of Applied Polymer Science, Vol. 108, No. 3, pp. 1810–1817, 2008.

    Article  Google Scholar 

  3. Verdejo, R., Stämpfli, R., Alvarez-Lainez, M., Mourad, S., Rodriguez-Perez, M., et al., “Enhanced Acoustic Damping in Flexible Polyurethane Foams Filled with Carbon Nanotubes,” Composites Science and Technology, Vol. 69, No. 10, pp. 1564–1569, 2009.

    Article  Google Scholar 

  4. Na, Y., Lancaster, J., Casali, J., and Cho, G., “Sound Absorption Coefficients of Micro-Fiber Fabrics by Reverberation Room Method,” Textile Research Journal, Vol. 77, No. 5, pp. 330–335, 2007.

    Article  Google Scholar 

  5. Broos, R., Sonney, J., Thanh, H. P., and Casati, F., “Polyurethane Foam Molding Technologies for Improving Total Passenger Compartment Comfort,” Proc. of the Polyurethane Conference, pp. 341–353, 2000.

    Google Scholar 

  6. Imai, Y. and Asano, T., “Studies of Acoustical Absorption of Flexible Polyurethane Foam,” Journal of Applied Polymer Science, Vol. 27, No. 1, pp. 183–195, 1982.

    Article  Google Scholar 

  7. Lyu, M.-Y. and Choi, T. G., “Research Trends in Polymer Materials for Use in Lightweight Vehicles,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 213–220, 2015.

    Article  Google Scholar 

  8. Dornfeld, D. A., “Moving towards Green and Sustainable Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 63–66, 2014.

    Article  Google Scholar 

  9. Jang, S., Goh, C. H., and Choi, H.-J., “Multiphase Design Exploration Method for Lightweight Structural Design: Example of Vehicle Mounted Antenna-Supporting Structure,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 281–287, 2015.

    Article  Google Scholar 

  10. Gwon, J. G., Kim, S. K., and Kim, J. H., “Sound Absorption Behavior of Flexible Polyurethane Foams with Distinct Cellular Structures,” Materials & Design, Vol. 89, pp. 448–454, 2016.

    Article  Google Scholar 

  11. Moon, S. K., Tan, Y. E., Hwang, J., and Yoon, Y.-J., “Application of 3D Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 223–228, 2014.

    Article  Google Scholar 

  12. Gwon, J. G., Kim, S. K., and Kim, J. H., “Development of Cell Morphologies in Manufacturing Flexible Polyurethane Urea Foams as Sound Absorption Materials,” Journal of Porous Materials, Vol. 23, No. 2, pp. 465–473, 2016.

    Article  Google Scholar 

  13. Zhang, X., Macosko, C., Davis, H., Nikolov, A., and Wasan, D., “Role of Silicone Surfactant in Flexible Polyurethane Foam,” Journal of Colloid and Interface Science, Vol. 215, No. 2, pp. 270–279, 1999.

    Article  Google Scholar 

  14. Gwon, J. G., Sung, G., and Kim, J. H., “Modulation of Cavities and Interconnecting Pores in Manufacturing Water Blown Flexible Poly (Urethane Urea) Foams,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2299–2307, 2015.

    Article  Google Scholar 

  15. Li, W., Ryan, A. J., and Meier, I. K., “Effect of Chain Extenders on the Morphology Development in Flexible Polyurethane Foam,” Macromolecules, Vol. 35, No. 16, pp. 6306–6312, 2002.

    Article  Google Scholar 

  16. Li, W., Ryan, A. J., and Meier, I. K., “Morphology Development via Reaction-Induced Phase Separation in Flexible Polyurethane Foam,” Macromolecules, Vol. 35, No. 13, pp. 5034–5042, 2002.

    Article  Google Scholar 

  17. Ning, L., De-Ning, W., and Sheng-Kang, Y., “Hydrogen-Bonding Properties of Segmented Polyether Poly (Urethane Urea) Copolymer,” Macromolecules, Vol. 30, No. 15, pp. 4405–4409, 1997.

    Article  Google Scholar 

  18. Heintz, A. M., Duffy, D. J., Nelson, C. M., Hua, Y., Hsu, S. L., et al., “A Spectroscopic Analysis of the Phase Evolution in Polyurethane Foams,” Macromolecules, Vol. 38, No. 22, pp. 9192–9199, 2005.

    Article  Google Scholar 

  19. Ugarte, L., Saralegi, A., Fernández, R., Martín, L., Corcuera, M., et al., “Flexible Polyurethane Foams Based on 100% Renewably Sourced Polyols,” Industrial Crops and Products, Vol. 62, pp. 545–551, 2014.

    Article  Google Scholar 

  20. Schön, P., Bagdi, K., Molnár, K., Markus, P., Pukánszky, B., et al., “Quantitative Mapping of Elastic Moduli at the Nanoscale in Phase Separated Polyurethanes by AFM,” European Polymer Journal, Vol. 47, No. 4, pp. 692–698, 2011.

    Article  Google Scholar 

  21. Kaushiva, B. and Wilkes, G., “Alteration of Polyurea Hard Domain Morphology by Diethanol Amine (DEOA) in Molded Flexible Polyurethane Foams,” Polymer, Vol. 41, No. 18, pp. 6981–6986, 2000.

    Article  Google Scholar 

  22. Wang, Y., Zhang, C., Ren, L., Ichchou, M., Galland, M. A., et al., “Influences of Rice Hull in Polyurethane Foam on Its Sound Absorption Characteristics,” Polymer Composites, Vol. 34, No. 11, pp. 1847–1855, 2013.

    Article  Google Scholar 

  23. Lee, J., Kim, G. H., and Ha, C. S., “Sound Absorption Properties of Polyurethane/Nano-Silica Nanocomposite Foams,” Journal of Applied Polymer Science, Vol. 123, No. 4, pp. 2384–2390, 2012.

    Article  Google Scholar 

  24. Kaushiva, B. D. and Wilkes, G. L., “Influence of Diethanolamine (DEOA) on Structure-Property Behavior of Molded Flexible Polyurethane Foams,” Journal of Applied Polymer Science, Vol. 77, No. 1, pp. 202–216, 2000.

    Article  Google Scholar 

  25. Xia, H., Song, M., Zhang, Z., and Richardson, M., “Microphase Separation, Stress Relaxation, and Creep Behavior of Polyurethane Nanocomposites,” Journal of Applied Polymer Science, Vol. 103, No. 5, pp. 2992–3002, 2007.

    Article  Google Scholar 

  26. Doutres, O., Atalla, N., and Dong, K., “Effect of the Microstructure Closed Pore Content on the Acoustic Behavior of Polyurethane Foams,” Journal of Applied Physics, Vol. 110, No. 6, Paper No. 064901, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hyeun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.K., Sung, G., Gwon, J.G. et al. Controlled phase separation in flexible polyurethane foams with diethanolamine cross-linker for improved sound absorption efficiency. Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 367–373 (2016). https://doi.org/10.1007/s40684-016-0046-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-016-0046-y

Keywords

Navigation