Skip to main content

Advertisement

Log in

Sleep-Disordered Breathing and Diastolic Heart Disease

  • Heart Disease and Sleep Disturbances (R Khayat, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sleep-disordered breathing (SDB) is highly prevalent in heart failure (HF), and the coexistence of these two disease conditions increases mortality. The purpose of this review is to examine the mechanistic interactions and associations between SBD, specifically obstructive sleep apnea (OSA), obesity hypoventilation (OHS), left ventricular (LV) diastolic heart function, and pulmonary hypertension (PH), as factors that directly contribute to the development of HF.

Recent Findings

The mechanistic interactions may be thought of as direct and indirect effects. The direct effects are related to abnormalities caused by sleep-disordered breathing that induce LV remodeling. Recent studies support the notion that the severity of OSA and recurrent hypoxia enhance LV remodeling even after accounting for age, weight, and underlying cardiorespiratory comorbid conditions. Indirect effects are due to the mechanical alterations intrathoracic organs during sleep due to negative intrathoracic pressure, obesity, as well as multiple derangements causing activation of the sympathetic nervous system and endothelium. The review also delineates multiple mechanisms that eventually lead to pulmonary vascular remodeling and PH.

Summary

The severity of daytime arterial oxygen levels and/or duration of nocturnal hypoxia, rather than the severity of SDB, seems to be the major determinants of PH in SBD, after adjusting for other cardiorespiratory diseases. Mechanisms by which hypercapnia contributes to PH and diastolic dysfunction need to be explored. Moreover, interactions between central sleep apnea and diastolic heart function are not well delineated. Further investigations are needed to elucidate any direct effect of hypercapnia on pulmonary pressures and potential cardiovascular consequences. There is limited evidence on the impact of PAP or oxygen therapy on these intermediary mechanisms of HF in SDB populations. The collection of evidence indicates that PAP may enhance diastolic function and reduce pulmonary artery pressure in OSA whereas studies in OHS populations are sparse and inconclusive. Thus, future research should delineate whether pathophysiology-based therapies can alleviate HF and HF related mortality in these SDB populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke Statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.

    Google Scholar 

  2. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.

    PubMed  Google Scholar 

  3. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol. 2017;69(7):841–58.

    PubMed  PubMed Central  Google Scholar 

  4. Khayat R, Jarjoura D, Porter K, Sow A, Wannemacher J, Dohar R, et al. Sleep disordered breathing and post-discharge mortality in patients with acute heart failure. Eur Heart J. 2015;36(23):1463–9.

    PubMed  PubMed Central  Google Scholar 

  5. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–5.

    CAS  PubMed  Google Scholar 

  6. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.

    PubMed  PubMed Central  Google Scholar 

  7. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of Obesity Among Adults and Youth: United States. NCHS Data Brief. 2015-2016;2017(288):1–8.

    Google Scholar 

  8. Mokhlesi B. Obesity hypoventilation syndrome: a state-of-the-art review. Respir Care. 2010;55(10):1347–62 discussion 63-5.

    PubMed  Google Scholar 

  9. Alawami M, Mustafa A, Whyte K, Alkhater M, Bhikoo Z, Pemberton J. Echocardiographic and electrocardiographic findings in patients with obesity hypoventilation syndrome. Intern Med J. 2015;45(1):68–73.

    CAS  PubMed  Google Scholar 

  10. Niroumand M, Kuperstein R, Sasson Z, Hanly PJ. Impact of obstructive sleep apnea on left ventricular mass and diastolic function. Am J Respir Crit Care Med. 2001;163(7):1632–6.

    CAS  PubMed  Google Scholar 

  11. Kraiczi H, Caidahl K, Samuelsson A, Peker Y, Hedner J. Impairment of vascular endothelial function and left ventricular filling : association with the severity of apnea-induced hypoxemia during sleep. Chest. 2001;119(4):1085–91.

    CAS  PubMed  Google Scholar 

  12. Fung JWH, Li TST, Choy DKL, Yip GWK, Ko FWS, Sanderson JE, et al. Severe obstructive sleep apnea is associated with left ventricular diastolic dysfunction. Chest. 2002;121(2):422–9.

    PubMed  Google Scholar 

  13. Arias MA, GarcíA-RíO F, Alonso-FernáNdez A, Mediano O, MartíNez I, Villamor J. Obstructive sleep apnea syndrome affects left ventricular diastolic function. Circulation. 2005;112(3):375–83.

    PubMed  Google Scholar 

  14. Baguet JP, Barone-Rochette G, Levy P, Vautrin E, Pierre H, Ormezzano O, et al. Left ventricular diastolic dysfunction is linked to severity of obstructive sleep apnoea. Eur Respir J. 2010;36(6):1323–9.

    PubMed  Google Scholar 

  15. Wachter R, Lüthje L, Klemmstein D, Lüers C, Stahrenberg R, Edelmann F, et al. Impact of obstructive sleep apnoea on diastolic function. Eur Respir J. 2013;41(2):376–83.

    PubMed  Google Scholar 

  16. Usui Y, Takata Y, Inoue Y, Tomiyama H, Kurohane S, Hashimura Y, et al. Severe obstructive sleep apnea impairs left ventricular diastolic function in non-obese men. Sleep Med. 2013;14(2):155–9.

    PubMed  Google Scholar 

  17. Chen YL, Su MC, Liu WH, Wang CC, Lin MC, Chen MC. Influence and predicting variables of obstructive sleep apnea on cardiac function and remodeling in patients without congestive heart failure. J Clin Sleep Med. 2014;10(1):57–64.

    PubMed  PubMed Central  Google Scholar 

  18. Bodez D, Lang S, Meuleman C, Boyer-Chatenet L, Nguyen XL, Soulat-Dufour L, et al. Left ventricular diastolic dysfunction in obstructive sleep apnoea syndrome by an echocardiographic standardized approach: an observational study. Arch Cardiovasc Dis. 2015;108(10):480–90.

    PubMed  Google Scholar 

  19. Glantz H, Thunstrom E, Johansson MC, Wallentin Guron C, Uzel H, Ejdeback J, et al. Obstructive sleep apnea is independently associated with worse diastolic function in coronary artery disease. Sleep Med. 2015;16(1):160–7.

    PubMed  Google Scholar 

  20. Fung ML, Tipoe GL, Leung PS. Mechanisms of maladaptive responses of peripheral chemoreceptors to intermittent hypoxia in sleep-disordered breathing. Sheng Li Xue Bao. 2014;66(1):23–9.

    CAS  PubMed  Google Scholar 

  21. Araz O, Yilmazel Ucar E, Degirmenci H, Pulur D, Acemoglu H, Bayram E, et al. The correlation of ECHO findings of right cardiac pathologies with BNP, uric acid, and CRP in OSAS. Turk J Med Sci. 2014;44(5):832–8.

    CAS  PubMed  Google Scholar 

  22. Guidry UC, Mendes LA, Evans JC, Levy D, O'Connor GT, Larson MG, et al. Echocardiographic features of the right heart in sleep-disordered breathing. Am J Respir Crit Care Med. 2001;164(6):933–8.

    CAS  PubMed  Google Scholar 

  23. Parker JD, Brooks D, Kozar LF, Render-Teixeira CL, Horner RL, Douglas Bradley T, et al. Acute and chronic effects of airway obstruction on canine left ventricular performance. Am J Respir Crit Care Med. 1999;160(6):1888–96.

    CAS  PubMed  Google Scholar 

  24. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest. 1993;103(6):1763–8.

    CAS  PubMed  Google Scholar 

  25. Narkiewicz K, Somers VK. The sympathetic nervous system and obstructive sleep apnea: implications for hypertension. J Hypertens. 1997;15(12 Pt 2):1613–9.

    CAS  PubMed  Google Scholar 

  26. Shell B, Faulk K, Cunningham JT. Neural Control of Blood Pressure in Chronic Intermittent Hypoxia. 2016;18(3).

  27. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schulz R, Hummel C, Heinemann S, Seeger W, Grimminger F. Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe nighttime hypoxia. Am J Respir Crit Care Med. 2002;165(1):67–70.

    PubMed  Google Scholar 

  29. Schulz R, Mahmoudi S, Hattar K, Sibelius U, Olschewski H, Mayer K, et al. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Am J Respir Crit Care Med. 2000;162(2):566–70.

    CAS  PubMed  Google Scholar 

  30. Nieto FJ, Herrington DM, Redline S, Benjamin EJ, Robbins JA. Sleep apnea and markers of vascular endothelial function in a large community sample of older adults. Am J Respir Crit Care Med. 2004;169(3):354–60.

    PubMed  Google Scholar 

  31. Fung ML. The role of local renin-angiotensin system in arterial chemoreceptors in sleep-breathing disorders. Front Physiol 2014;5.

  32. Newman AB. Progression and regression of sleep-disordered breathing with changes in weight. Arch Intern Med. 2005;165(20):2408–13.

    PubMed  Google Scholar 

  33. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.

    CAS  PubMed  Google Scholar 

  34. Rayner JJ, Banerjee R, Holloway CJ, Lewis AJM, Peterzan MA, Francis JM, et al. The relative contribution of metabolic and structural abnormalities to diastolic dysfunction in obesity. Int J Obes. 2018;42(3):441–7.

    CAS  Google Scholar 

  35. Shiomi T, Guilleminault C, Stoohs R, Schnittger I. Leftward shift of the interventricular septum and pulsus paradoxus in obstructive sleep apnea syndrome. Chest. 1991;100(4):894–902.

    CAS  PubMed  Google Scholar 

  36. Drager LF, Bortolotto LA, Figueiredo AC, Silva BC, Krieger EM, Lorenzi-Filho G. Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest. 2007;131(5):1379–86.

    PubMed  Google Scholar 

  37. Virolainen J, Ventila M, Turto H, Kupari M. Effect of negative intrathoracic pressure on left ventricular pressure dynamics and relaxation. J Appl Physiol (1985). 1995;79(2):455–60.

    CAS  Google Scholar 

  38. • Al Otair HA, Elshaer F, Elgishy A, Nashwan SZ, Almeneessier AS, Olaish AH, et al. Left ventricular diastolic dysfunction in patients with obesity hypoventilation syndrome. Journal Thorac Dis. 2018;10(10):5747–54 Study showed that diastolic left ventricular dysfunction was prevalent among OHS patients even in the absence of severe OSA.

    Google Scholar 

  39. • Corral J, Mogollon MV, Sanchez-Quiroga MA, Gomez de Terreros J, Romero A, Caballero C, et al. Echocardiographic changes with non-invasive ventilation and CPAP in obesity hypoventilation syndrome. Thorax. 2018;73(4):361–8 Study presents the effect of PAP therapy on echocardiographic findings in OHS.

    PubMed  Google Scholar 

  40. Rasmussen JP. Cardiac Function and Hypercarbia. Arch Surg. 1978;113(10):1196.

    CAS  PubMed  Google Scholar 

  41. Lee SD, Kuo WW, Bau DT, Ko FY, Wu FL, Kuo CH, et al. The coexistence of nocturnal sustained hypoxia and obesity additively increases cardiac apoptosis. J Appl Physiol (1985). 2008;104(4):1144–53.

    CAS  Google Scholar 

  42. Tilkian AG. Hemodynamics in sleep-induced apnea. Ann Intern Med. 1976;85(6):714–9.

    CAS  PubMed  Google Scholar 

  43. Podszus T, Bauer W, Mayer J, Penzel T, Peter JH, von Wichert P. Sleep apnea and pulmonary hypertension. Klin Wochenschr. 1986;64(3):131–4.

    CAS  PubMed  Google Scholar 

  44. Fletcher EC, Schaaf JW, Miller J, Fletcher JG. Long-term cardiopulmonary sequelae in patients with sleep apnea and chronic lung disease. Am Rev Respir Dis. 1987;135(3):525–33.

    CAS  PubMed  Google Scholar 

  45. Weitzenblum E, Krieger J, Apprill M, Vallee E, Ehrhart M, Ratomaharo J, et al. Daytime pulmonary hypertension in patients with obstructive sleep apnea syndrome. Am Rev Respir Dis. 1988;138(2):345–9.

    CAS  PubMed  Google Scholar 

  46. Krieger J, Sforza E, Apprill M, Lantpert E, Weitzenblum E, Ratomaharv J. Pulmonary hypertension, hypoxemia, and hypercapnia in obstructive sleep apnea patients. Chest. 1989;96(4):729–37.

    CAS  PubMed  Google Scholar 

  47. Laks L, Lehrhaft B, Grunstein RR, Sullivan CE. Pulmonary hypertension in obstructive sleep apnoea. Eur Respir J. 1995;8(4):537–41.

    CAS  PubMed  Google Scholar 

  48. Chaouat A, Weitzenblum E, Krieger J, Oswald M, Kessler R. Pulmonary hemodynamics in the obstructive sleep apnea syndrome: results in 220 consecutive patients. Chest. 1996;109(2):380–6.

    CAS  PubMed  Google Scholar 

  49. Sajkov D, Cowie RJ, Thornton AT, Espinoza HA, McEvoy RD. Pulmonary hypertension and hypoxemia in obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 1994;149(2):416–22.

    CAS  PubMed  Google Scholar 

  50. Bady E, Achkar A, Pascal S, Orvoen-Frija E, Laaban JP. Pulmonary arterial hypertension in patients with sleep apnoea syndrome. Thorax. 2000;55(11):934–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Minai OA, Ricaurte B, Kaw R, Hammel J, Mansour M, McCarthy K, et al. Frequency and impact of pulmonary hypertension in patients with obstructive sleep apnea syndrome. Am J Cardiol. 2009;104(9):1300–6.

    PubMed  Google Scholar 

  52. Sanner BM, Doberauer C, Konermann M, Sturm A, Zidek W. Pulmonary hypertension in patients with obstructive sleep apnea syndrome. Arch Intern Med. 1997;157(21):2483–7.

    CAS  PubMed  Google Scholar 

  53. Laks L, Lehrhaft B, Grunstein RR, Sullivan CE. Pulmonary artery pressure response to hypoxia in sleep apnea. Am J Respir Crit Care Med. 1997;155(1):193–8.

    CAS  PubMed  Google Scholar 

  54. Niijima M, Kimura H, Edo H, Shinozaki T, Kang J, Masuyama S, et al. Manifestation of pulmonary hypertension during REM sleep in obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 1999;159(6):1766–72.

    CAS  PubMed  Google Scholar 

  55. Coccagna G, Lugaresi E. Haemodynamics during sleep: old results and new perspectives. J Sleep Res. 1995;4:2–7.

    CAS  PubMed  Google Scholar 

  56. Coccagna G, Mantovani M, Brignani F, Parchi C, Lugaresi E. Continuous recording of the pulmonary and systemic arterial pressure during sleep in syndromes of hypersomnia with periodic breathing. Bull Physiopathol Respir (Nancy). 1972;8(5):1159–72.

    CAS  PubMed  Google Scholar 

  57. Coccagna G, Mantovani M, Brignani F, Parchi C, Lugaresi E. Tracheostomy in hypersomnia with periodic breathing. Bull Physiopathol Respir (Nancy). 1972;8(5):1217–27.

    CAS  Google Scholar 

  58. Schneider H, Schaub CD, Chen CA, Andreoni KA, Schwartz AR, Smith PL, et al. Neural and local effects of hypoxia on cardiovascular responses to obstructive apnea. J Appl Physiol (1985). 2000;88(3):1093–102.

    CAS  Google Scholar 

  59. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling. Circ Res. 2006;99(7):675–91.

    CAS  PubMed  Google Scholar 

  60. Kay JM, Suyama KL, Keane PM. Effect of intermittent normoxia on muscularization of pulmonary arterioles induced by chronic hypoxia in rats. Am Rev Respir Dis. 1981;123(4 Pt 1):454–8.

    CAS  PubMed  Google Scholar 

  61. Arias-Stella J, SaldañA M. The terminal portion of the pulmonary arterial tree in people native to high altitudes. Circulation. 1963;28(5):915–25.

    CAS  PubMed  Google Scholar 

  62. Shimoda LA, Laurie SS. Vascular remodeling in pulmonary hypertension. J Mol Med (Berl). 2013;91(3):297–309.

    CAS  Google Scholar 

  63. Kobs RW, Chesler NC. The mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS. Biomech Model Mechanobiol. 2006;5(4):217–25.

    PubMed  Google Scholar 

  64. Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am J Phys Heart Circ Phys. 2005;288(3):H1209–H17.

    CAS  Google Scholar 

  65. Ambalavanan N, Nicola T, Hagood J, Bulger A, Serra R, Murphy-Ullrich J, et al. Transforming growth factor-signaling mediates hypoxia-induced pulmonary arterial remodeling and inhibition of alveolar development in newborn mouse lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L86–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol. 1997;59(1):89–144.

    CAS  PubMed  Google Scholar 

  67. Chen Y-F, Feng J-A, Li P, Xing D, Zhang Y, Serra R, et al. Dominant negative mutation of the TGF-β receptor blocks hypoxia-induced pulmonary vascular remodeling. J Appl Physiol. 2006;100(2):564–71.

    CAS  PubMed  Google Scholar 

  68. Weiss JW, Liu Y, Li X, Ji E-S. Nitric oxide and obstructive sleep apnea. Respir Physiol Neurobiol. 2012;184(2):192–6.

    CAS  PubMed  Google Scholar 

  69. Cooper CJ, Landzberg MJ, Anderson TJ, Charbonneau F, Creager MA, Ganz P, et al. Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation. 1996;93(2):266–71.

    CAS  PubMed  Google Scholar 

  70. Phillips BG, Narkiewicz K, Pesek CA, Haynes WG, Dyken ME, Somers VK. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J Hypertens. 1999;17(1):61–6.

    CAS  PubMed  Google Scholar 

  71. Friedman JK, Nitta CH, Henderson KM, Codianni SJ, Sanchez L, Ramiro-Diaz JM, et al. Intermittent hypoxia-induced increases in reactive oxygen species activate NFATc3 increasing endothelin-1 vasoconstrictor reactivity. Vascul Pharmacol. 2014;60(1):17–24.

    CAS  PubMed  Google Scholar 

  72. Kanagy NL. Vascular effects of intermittent hypoxia. ILAR J. 2009;50(3):282–8.

    CAS  PubMed  Google Scholar 

  73. Gras E, Belaidi E, Briançon-Marjollet A, Pépin J-L, Arnaud C, Godin-Ribuot D. Endothelin-1 mediates intermittent hypoxia-induced inflammatory vascular remodeling through HIF-1 activation. J Appl Physiol. 2016;120(4):437–43.

    CAS  PubMed  Google Scholar 

  74. Orr RS, Jordan AS, Catcheside P, Saunders NA, McEvoy RD. Sustained isocapnic hypoxia suppresses the perception of the magnitude of inspiratory resistive loads. J Appl Physiol (1985). 2000;89(1):47–55.

    CAS  Google Scholar 

  75. Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med. 2004;169(5):623–33.

    PubMed  Google Scholar 

  76. Issa FG, Sullivan CE. Arousal and breathing responses to airway occlusion in healthy sleeping adults. J Appl Physiol. 1983;55(4):1113–9.

    CAS  PubMed  Google Scholar 

  77. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. Sleep Apnea. J Am Coll Cardiol. 2017;69(7):841–58.

    PubMed  PubMed Central  Google Scholar 

  78. Buda AJ, Pinsky MR, Ingels NB Jr, Daughters GT 2nd, Stinson EB, Alderman EL. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 1979;301(9):453–9.

    CAS  PubMed  Google Scholar 

  79. Javaheri S. A mechanism of central sleep apnea in patients with heart failure. N Engl J Med. 1999;341(13):949–54.

    CAS  PubMed  Google Scholar 

  80. Spaak J, Egri ZJ, Kubo T, Yu E, Ando S, Kaneko Y, et al. Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension. 2005;46(6):1327–32.

    CAS  PubMed  Google Scholar 

  81. Kazimierczak A, Krzesiński P, Gielerak G, Uziębło-Życzkowska B, Smurzyński P, Ryczek R, et al. Association of central sleep apnea with impaired heart structure and cardiovascular hemodynamics in patients with chronic heart failure. Med Sci Monit. 2016;22:2989–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Giannoni A, Raglianti V, Mirizzi G, Taddei C, Del Franco A, Iudice G, et al. Influence of central apneas and chemoreflex activation on pulmonary artery pressure in chronic heart failure. Int J Cardiol. 2016;202:200–6.

    PubMed  Google Scholar 

  83. Emdin M, Mirizzi G, Giannoni A, Poletti R, Iudice G, Bramanti F, et al. Prognostic significance of central apneas throughout a 24-hour period in patients with heart failure. J Am Coll Cardiol. 2017;70(11):1351–64.

    PubMed  Google Scholar 

  84. Solin P, Jackson DM, Roebuck T, Naughton MT. Cardiac diastolic function and hypercapnic ventilatory responses in central sleep apnoea. Eur Respir J. 2002;20(3):717–23.

    CAS  PubMed  Google Scholar 

  85. Naughton MT, Benard DC, Liu PP, Rutherford R, Rankin F, Bradley TD. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am J Respir Crit Care Med. 1995;152(2):473–9.

    CAS  PubMed  Google Scholar 

  86. Naughton MT, Benard DC, Rutherford R, Bradley TD. Effect of continuous positive airway pressure on central sleep apnea and nocturnal PCO2 in heart failure. Am J Respir Crit Care Med. 1994;150(6 Pt 1):1598–604.

    CAS  PubMed  Google Scholar 

  87. Atwood CW, McCrory D, Garcia JGN, Abman SH, Ahearn GS. Pulmonary artery hypertension and sleep-disordered breathing. Chest. 2004;126(1):72S–7S.

    PubMed  Google Scholar 

  88. Kessler R, Chaouat A, Weitzenblum E, Oswald M, Ehrhart M, Apprill M, et al. Pulmonary hypertension in the obstructive sleep apnoea syndrome: prevalence, causes and therapeutic consequences. Eur Respir J. 1996;9(4):787–94.

    CAS  PubMed  Google Scholar 

  89. Kauppert CA, Dvorak I, Kollert F, Heinemann F, Jörres RA, Pfeifer M, et al. Pulmonary hypertension in obesity-hypoventilation syndrome. Respir Med. 2013;107(12):2061–70.

    PubMed  Google Scholar 

  90. Rochester DF, Enson Y. Current concepts in the pathogenesis of the obesity-hypoventilation syndrome. Mechanical and circulatory factors. Am J Med. 1974;57(3):402–20.

    CAS  PubMed  Google Scholar 

  91. Marrone O, Bellia V, Pieri D, Salvaggio A, Bonsignore G. Acute effects of oxygen administration on transmural pulmonary artery pressure in obstructive sleep apnea. Chest. 1992;101(4):1023–7.

    CAS  PubMed  Google Scholar 

  92. Iwase N, Kikuchi Y, Hida W, Miki H, Taguchi O, Satoh M, et al. Effects of repetitive airway obstruction on O2 saturation and systemic and pulmonary arterial pressure in anesthetized dogs. Am Rev Respir Dis. 1992;146(6):1402–10.

    CAS  PubMed  Google Scholar 

  93. Jilek C, Krenn M, Sebah D, Obermeier R, Braune A, Kehl V, et al. Prognostic impact of sleep disordered breathing and its treatment in heart failure: an observational study. Eur J Heart Fail. 2011;13(1):68–75.

    PubMed  Google Scholar 

  94. Akar Bayram N, Ciftci B, Durmaz T, Keles T, Yeter E, Akcay M, et al. Effects of continuous positive airway pressure therapy on left ventricular function assessed by tissue Doppler imaging in patients with obstructive sleep apnoea syndrome. Eur J Echocardiogr. 2009;10(3):376–82.

    PubMed  Google Scholar 

  95. Oliveira W, Campos O, Cintra F, Matos L, Vieira ML, Rollim B, et al. Impact of continuous positive airway pressure treatment on left atrial volume and function in patients with obstructive sleep apnoea assessed by real-time three-dimensional echocardiography. Heart. 2009;95(22):1872–8.

    CAS  PubMed  Google Scholar 

  96. D'Andrea A, Martone F, Liccardo B, Mazza M, Annunziata A, Di Palma E, et al. Acute and chronic effects of noninvasive ventilation on left and right myocardial function in patients with obstructive sleep apnea syndrome: a speckle tracking echocardiographic study. Echocardiography. 2016;33(8):1144–55.

    PubMed  Google Scholar 

  97. Shim CY, Kim D, Park S, Lee CJ, Cho HJ, Ha JW, et al. Effects of continuous positive airway pressure therapy on left ventricular diastolic function: a randomised, sham-controlled clinical trial. Eur Respir J. 2018;51(2).

    Google Scholar 

  98. Bilge AR, Yavuz V, Cetin N, Dalgic O, Kum G, Yilmaz H, et al. The effect of long-term continuous positive airway pressure treatment on systolic and diastolic function in patients with obstructive sleep apnoea syndrome: a five year observational study. Anadolu Kardiyol Derg. 2014;14(3):265–71.

    PubMed  Google Scholar 

  99. • Glantz H, Johansson MC, Thunstrom E, Guron CW, Uzel H, Saygin M, et al. Effect of CPAP on diastolic function in coronary artery disease patients with nonsleepy obstructive sleep apnea: a randomized controlled trial. Int J Cardiol. 2017;241:12–8 One of the few studies that described the effects of PAP therapy on LV diastolic function in OSA patients.

    PubMed  Google Scholar 

  100. Carter JR, Fonkoue IT, Grimaldi D, Emami L, Gozal D, Sullivan CE, et al. Positive airway pressure improves nocturnal beat-to-beat blood pressure surges in obesity hypoventilation syndrome with obstructive sleep apnea. Am J Phys Regul Integr Comp Phys. 2016;310(7):R602–R11.

    Google Scholar 

  101. Chaouat A, Weitzenblum E, Kessler R, Oswald M, Sforza E, Liegeon MN, et al. Five-year effects of nasal continuous positive airway pressure in obstructive sleep apnoea syndrome. Eur Respir J. 1997;10(11):2578–82.

    CAS  PubMed  Google Scholar 

  102. Imran TF, Ghazipura M, Liu S, Hossain T, Ashtyani H, Kim B, et al. Effect of continuous positive airway pressure treatment on pulmonary artery pressure in patients with isolated obstructive sleep apnea: a meta-analysis. Heart Fail Rev. 2016;21(5):591–8.

    CAS  PubMed  Google Scholar 

  103. Arias MA, García-Río F, Alonso-Fernández A, Martínez I, Villamor J. Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure. Eur Heart J. 2006;27(9):1106–13.

    PubMed  Google Scholar 

  104. Sajkov D, Wang T, Saunders NA, Bune AJ, Douglas MR. Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2002;165(2):152–8.

    PubMed  Google Scholar 

  105. Alchanatis M, Tourkohoriti G, Kakouros S, Kosmas E, Podaras S, Jordanoglou JB. Daytime pulmonary hypertension in patients with obstructive sleep apnea: the effect of continuous positive airway pressure on pulmonary hemodynamics. Respiration. 2001;68(6):566–72.

    CAS  PubMed  Google Scholar 

  106. Redfield MM, Jacobsen SJ, Burnett JJC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community. JAMA. 2003;289(2):194–202.

    PubMed  Google Scholar 

  107. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375(10):919–31.

    PubMed  Google Scholar 

  108. Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunstrom E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA randomized controlled trial. Am J Respir Crit Care Med. 2016;194(5):613–20.

    CAS  PubMed  Google Scholar 

  109. Bradley TD, Logan AG, Kimoff RJ, Sériès F, Morrison D, Ferguson K, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353(19):2025–33.

    CAS  PubMed  Google Scholar 

  110. Dumitrascu R, Tiede H, Eckermann J, Mayer K, Reichenberger F, Ghofrani HA, et al. Sleep apnea in precapillary pulmonary hypertension. Sleep Med. 2013;14(3):247–51.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Chowdhuri.

Ethics declarations

Conflict of Interest

Dr. Chowdhuri, Dr. Venkat, and Dr. Abbas each declare no conflicts of interest.

Human and Animal Rights Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Disease and Sleep Disturbances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkat, D., Abbas, H. & Chowdhuri, S. Sleep-Disordered Breathing and Diastolic Heart Disease. Curr Sleep Medicine Rep 5, 243–254 (2019). https://doi.org/10.1007/s40675-019-00160-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-019-00160-z

Keywords

Navigation