Skip to main content

Advertisement

Log in

Understanding and Therapeutically Targeting the Scleroderma Myofibroblast

  • Scleroderma (S Bhattacharyya, Section Editor)
  • Published:
Current Treatment Options in Rheumatology Aims and scope Submit manuscript

Abstract

Purpose of Review

Myofibroblasts represent matrix-producing effector cells which both produce and maintain the pro-fibrotic microenvironment in scleroderma and other fibrotic diseases. This review first explores the origins, function, regulators, interactions, and death of myofibroblasts in fibrotic tissue and then utilizes this information to guide understanding of current and future treatments which may target these cells.

Recent Findings.

Beyond existing immunomodulatory therapy for SSc, there are an increasing number of anti-fibrotic therapies which are either under clinical study or development which may be able to effectively target myofibroblasts.

Summary

The role of myofibroblast modulation in treatment of scleroderma is a promising field with data supporting multiple new agents which may modulate myofibroblasts as anti-fibrotic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source of myofibroblasts is tissue-resident fibroblasts which are activated to become proto-myofibroblasts and eventually evolve to a more contractile phenotype as myofibroblasts. Other sources of myofibroblasts include epithelial cells via epithelial-mesenchymal transition (EMT), endothelial cells via endothelial mesenchymal transition (EndoMT), adipocytes via adipocyte mesenchymal transition (AMT), and pericytes. Myofibroblasts produce and are associated with extracellular matrix (ECM, fibrillar lattice-like structure) and ECM interacts with proteins including integrins and TGF-β to lead to intracellular Rho/ROCK signaling and activation of the TGF-β/SMAD pathway. Other relevant intracellular pathways include the Wnt, YAP/TAZ, and PDGFR/AKT pathways. IL-6 and IL-4/13 represent key profibrotic cytokines which signal through JAK/STAT pathways to activate myofibroblasts. Figure made with Biorender

Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, Varga J. Systemic sclerosis Nat Rev Dis Primers. 2015;1:15002. https://doi.org/10.1038/nrdp.2015.2. (Overview of the pathogeneic basis of systemic sclerosis and its clincial and molecular hetorgeneity.)

  2. Rockey DC, Bell PD, Hill JA. Fibrosis–a common pathway to organ injury and failure. N Engl J Med. 2015;372:1138–49. https://doi.org/10.1056/NEJMra1300575.

    Article  CAS  PubMed  Google Scholar 

  3. Garrett SM, Baker Frost D, Feghali-Bostwick C. The mighty fibroblast and its utility in scleroderma research. J Scleroderma Relat Disord. 2017;2:69–134. https://doi.org/10.5301/jsrd.5000240.

    Article  PubMed  Google Scholar 

  4. van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol. 2018;9:2452. https://doi.org/10.3389/fimmu.2018.02452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gabbiani G, Ryan GB, Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971;27:549–50. https://doi.org/10.1007/BF02147594.

    Article  CAS  PubMed  Google Scholar 

  6. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. https://doi.org/10.3389/fphar.2014.00123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmitt-Graff A, Desmouliere A, Gabbiani G. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch. 1994;425:3–24. https://doi.org/10.1007/BF00193944.

    Article  CAS  PubMed  Google Scholar 

  8. Brown LF, Dubin D, Lavigne L, Logan B, Dvorak HF, Van de Water L. Macrophages and fibroblasts express embryonic fibronectins during cutaneous wound healing. Am J Pathol. 1993;142:793–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200:500–3. https://doi.org/10.1002/path.1427.

    Article  CAS  PubMed  Google Scholar 

  10. Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C. Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell. 2003;14:2508–19. https://doi.org/10.1091/mbc.e02-11-0729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhattacharyya, S., Tamaki, Z., Wang, W., Hinchcliff, M., Hoover, P., Getsios, S., . . . Varga, J. FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci Transl Med (2014) 6 232ra250. https://doi.org/10.1126/scitranslmed.3008264.

  12. Ebmeier S, Horsley V. Origin of fibrosing cells in systemic sclerosis. Curr Opin Rheumatol. 2015;27:555–62. https://doi.org/10.1097/BOR.0000000000000217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajkumar VS, Howell K, Csiszar K, Denton CP, Black CM, Abraham DJ. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res Ther. 2005;7:R1113. https://doi.org/10.1186/ar1790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abu El-Asrar AM, Struyf S, Van Damme J, Geboes K. Circulating fibrocytes contribute to the myofibroblast population in proliferative vitreoretinopathy epiretinal membranes. Br J Ophthalmol. 2008;92:699–704. https://doi.org/10.1136/bjo.2007.134346.

    Article  CAS  PubMed  Google Scholar 

  15. • Marangoni, R. G., Korman, B. D., Wei, J., Wood, T. A., Graham, L. V., Whitfield, M. L., . . . Varga, J. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol (2015) 67, 1062–1073. https://doi.org/10.1002/art.38990. (Description of pathogenic role of adipose tissue in dermal fibrosis and SSc.)

  16. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84. https://doi.org/10.1038/s41580-018-0080-4.

    Article  CAS  PubMed  Google Scholar 

  17. Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074–80. https://doi.org/10.1016/j.ajpath.2011.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314:15–23. https://doi.org/10.1007/s00441-003-0745-x.

    Article  PubMed  Google Scholar 

  19. Humphreys, B. D., Lin, S. L., Kobayashi, A., Hudson, T. E., Nowlin, B. T., Bonventre, J. V., . . . Duffield, J. S. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol (2010) 176, 85–97. https://doi.org/10.2353/ajpath.2010.090517.

  20. Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol. 2011;11:427–35. https://doi.org/10.1038/nri2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kleaveland KR, Moore BB, Kim KK. Paracrine functions of fibrocytes to promote lung fibrosis. Expert Rev Respir Med. 2014;8:163–72. https://doi.org/10.1586/17476348.2014.862154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marangoni RG, Korman B, Varga J. Adipocytic progenitor cells give rise to pathogenic myofibroblasts: adipocyte-to-mesenchymal transition and its emerging role in fibrosis in multiple organs. Curr Rheumatol Rep. 2020;22:79. https://doi.org/10.1007/s11926-020-00957-w.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol. 2018;71–72:112–27. https://doi.org/10.1016/j.matbio.2018.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition. Hum Pathol. 2009;40:1365–76. https://doi.org/10.1016/j.humpath.2009.02.020.

    Article  CAS  PubMed  Google Scholar 

  25. Stemmler MP, Eccles RL, Brabletz S, Brabletz T. Non-redundant functions of EMT transcription factors. Nat Cell Biol. 2019;21:102–12. https://doi.org/10.1038/s41556-018-0196-y.

    Article  CAS  PubMed  Google Scholar 

  26. Bischoff J. Endothelial-to-Mesenchymal Transition. Circ Res. 2019;124:1163–5. https://doi.org/10.1161/CIRCRESAHA.119.314813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cipriani, P., Di Benedetto, P., Ruscitti, P., Capece, D., Zazzeroni, F., Liakouli, V., . . . Giacomelli, R. The endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol (2015) 42, 1808–1816. https://doi.org/10.3899/jrheum.150088

  28. Serrati, S., Chilla, A., Laurenzana, A., Margheri, F., Giannoni, E., Magnelli, L., . . . Del Rosso, M. Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor beta-dependent mesenchymal-to-mesenchymal transition. Arthritis Rheum (2013) 65, 258–269. https://doi.org/10.1002/art.37705.

  29. Manetti M, Romano E, Rosa I, Guiducci S, Bellando-Randone S, De Paulis A, . . . Matucci-Cerinic M. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann Rheum Dis (2017) 76, 924–934. https://doi.org/10.1136/annrheumdis-2016-210229.

  30. Varga J, Pasche B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009;5:200–6. https://doi.org/10.1038/nrrheum.2009.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gilbert RWD, Vickaryous MK, Viloria-Petit AM. Signalling by transforming growth factor beta isoforms in wound healing and tissue regeneration. J Dev Biol (2016) 4. https://doi.org/10.3390/jdb4020021.

  32. Robertson IB, Rifkin DB. Unchaining the beast; insights from structural and evolutionary studies on TGFbeta secretion, sequestration, and activation. Cytokine Growth Factor Rev. 2013;24:355–72. https://doi.org/10.1016/j.cytogfr.2013.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179:1311–23. https://doi.org/10.1083/jcb.200704042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frangogiannis N. Transforming growth factor-beta in tissue fibrosis. J Exp Med. 2020;217:e20190103. https://doi.org/10.1084/jem.20190103.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lafyatis R. Transforming growth factor beta–at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10:706–19. https://doi.org/10.1038/nrrheum.2014.137.

    Article  CAS  PubMed  Google Scholar 

  36. Wei J, Melichian D, Komura K, Hinchcliff M, Lam AP, Lafyatis R, . . . Varga J. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma? Arthritis Rheum (2011) 63, 1707–1717. https://doi.org/10.1002/art.30312.

  37. Wei J, Fang F, Lam AP, Sargent JL, Hamburg E, Hinchcliff ME, . . . Varga J. Wnt/beta-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum (2012) 64, 2734–2745. https://doi.org/10.1002/art.34424.

  38. Dees C, Schlottmann I, Funke R, Distler A, Palumbo-Zerr K, Zerr P, . . . Distler JH. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann Rheum Dis (2014) 73, 1232–1239. https://doi.org/10.1136/annrheumdis-2012-203194.

  39. Horn A, Palumbo K, Cordazzo C, Dees C, Akhmetshina A, Tomcik M, . . . Distler JH. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum (2012) 64, 2724–2733. https://doi.org/10.1002/art.34444.

  40. Distler A, Lang V, Del Vecchio T, Huang J, Zhang Y, Beyer C, . . . Distler JH. Combined inhibition of morphogen pathways demonstrates additive antifibrotic effects and improved tolerability. Ann Rheum Dis (2014) 73, 1264–1268. https://doi.org/10.1136/annrheumdis-2013-204221.

  41. Dees, C., Zerr, P., Tomcik, M., Beyer, C., Horn, A., Akhmetshina, A., . . . Distler, J. H. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum (2011) 63, 1396–1404. https://doi.org/10.1002/art.30254.

  42. Liu, F., Lagares, D., Choi, K. M., Stopfer, L., Marinković, A., Vrbanac, V., . . . Tschumperlin, D. J. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology (2015) 308, L344-L357. https://doi.org/10.1152/ajplung.00300.2014.

  43. Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Front Med (Lausanne). 2015;2:59. https://doi.org/10.3389/fmed.2015.00059.

    Article  Google Scholar 

  44. Gallucci RM, Lee EG, Tomasek JJ. IL-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from IL-6-deficient mice. J Investig Dermatol. 2006;126:561–8. https://doi.org/10.1038/sj.jid.5700109.

    Article  CAS  PubMed  Google Scholar 

  45. Denton, C. P., Ong, V. H., Xu, S., Chen-Harris, H., Modrusan, Z., Lafyatis, R., . . . Sornasse, T. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Ann Rheum Dis (2018)77, 1362–1371. https://doi.org/10.1136/annrheumdis-2018-213031.

  46. Kawaguchi Y. Contribution of interleukin-6 to the Pathogenesis of Systemic Sclerosis. Journal of Scleroderma and Related Disorders. 2017;2:S6–12. https://doi.org/10.5301/jsrd.5000258.

    Article  Google Scholar 

  47. Gasparini G, Cozzani E, Parodi A. Interleukin-4 and interleukin-13 as possible therapeutic targets in systemic sclerosis. Cytokine. 2020;125:154799. https://doi.org/10.1016/j.cyto.2019.154799.

    Article  CAS  PubMed  Google Scholar 

  48. Salmon-Ehr, V., Serpier, H., Nawrocki, B., Gillery, P., Clavel, C., Kalis, B., . . . Maquart, F.-X. Expression of interleukin-4 in Scleroderma skin specimens and scleroderma fibroblast cultures: potential role in fibrosis. Archives of Dermatology (1996) 132, 802-806https://doi.org/10.1001/archderm.1996.03890310088013

  49. Fuschiotti P, Larregina AT, Ho J, Feghali-Bostwick C, Medsger TA Jr. Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum. 2013;65:236–46. https://doi.org/10.1002/art.37706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chizzolini C, Dufour AM, Brembilla NC. Is there a role for IL-17 in the pathogenesis of systemic sclerosis? Immunol Lett. 2018;195:61–7. https://doi.org/10.1016/j.imlet.2017.09.007.

    Article  CAS  PubMed  Google Scholar 

  51. Ramani K, Biswas PS. Interleukin-17: Friend or foe in organ fibrosis. Cytokine. 2019;120:282–8. https://doi.org/10.1016/j.cyto.2018.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ng, B., Dong, J., D'Agostino, G., Viswanathan, S., Widjaja, A. A., Lim, W. W., . . . Cook, S. A. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med (2019) 11. https://doi.org/10.1126/scitranslmed.aaw1237.

  53. Cook SA, Schafer S. Hiding in plain sight: interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu Rev Med. 2020;71:263–76. https://doi.org/10.1146/annurev-med-041818-011649.

    Article  CAS  PubMed  Google Scholar 

  54. Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, . . . Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biology (2018) 68–69, 44–66. https://doi.org/10.1016/j.matbio.2018.03.007.

  55. Abraham D. Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford). 2008;47(Suppl 5):v8-9. https://doi.org/10.1093/rheumatology/ken278.

    Article  CAS  Google Scholar 

  56. Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective tissue growth factor: from molecular understandings to drug discovery. Front Cell Dev Biol. 2020;8:593269. https://doi.org/10.3389/fcell.2020.593269.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu S, Shi-wen X, Abraham DJ, Leask A. CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum. 2011;63:239–46. https://doi.org/10.1002/art.30074.

    Article  CAS  PubMed  Google Scholar 

  58. Klinkhammer BM, Floege J, Boor P. PDGF in organ fibrosis. Mol Aspects Med. 2018;62:44–62. https://doi.org/10.1016/j.mam.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  59. Hinz B. Myofibroblasts. Exp Eye Res. 2016;142:56–70. https://doi.org/10.1016/j.exer.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  60. Fujio K, Komai T, Inoue M, Morita K, Okamura T, Yamamoto K. Revisiting the regulatory roles of the TGF-beta family of cytokines. Autoimmun Rev. 2016;15:917–22. https://doi.org/10.1016/j.autrev.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  61. Wei, J., Zhu, H., Komura, K., Lord, G., Tomcik, M., Wang, W., . . . Varga, J. A synthetic PPAR-gamma agonist triterpenoid ameliorates experimental fibrosis: PPAR-gamma-independent suppression of fibrotic responses. Ann Rheum Dis (2014) 73, 446-454https://doi.org/10.1136/annrheumdis-2012-202716

  62. Wei, J., Ghosh, A. K., Sargent, J. L., Komura, K., Wu, M., Huang, Q. Q., . . . Varga, J. PPARgamma downregulation by TGFss in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS One (2010) 5, e13778. https://doi.org/10.1371/journal.pone.0013778.

  63. Ruzehaji, N., Frantz, C., Ponsoye, M., Avouac, J., Pezet, S., Guilbert, T., . . . Allanore, Y. Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis. Ann Rheum Dis (2016) 75, 2175–2183. https://doi.org/10.1136/annrheumdis-2015-208029.

  64. Korman B, Marangoni RG, Lord G, Olefsky J, Tourtellotte W, Varga J. Adipocyte-specific repression of PPAR-gamma by NCoR contributes to scleroderma skin fibrosis. Arthritis Res Ther. 2018;20:145. https://doi.org/10.1186/s13075-018-1630-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dolivo DM, Larson SA, Dominko T. Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev. 2017;38:49–58. https://doi.org/10.1016/j.cytogfr.2017.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xie, Y., Su, N., Yang, J., Tan, Q., Huang, S., Jin, M., . . . Chen, L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther (2020) 5, 181. https://doi.org/10.1038/s41392-020-00222-7.

  67. Gu L, Zhu YJ, Guo ZJ, Xu XX, Xu WB. Effect of IFN-gamma and dexamethasone on TGF-beta1-induced human fetal lung fibroblast-myofibroblast differentiation. Acta Pharmacol Sin. 2004;25:1479–88.

    CAS  PubMed  Google Scholar 

  68. Dooley S, Said HM, Gressner AM, Floege J, En-Nia A, Mertens PR. Y-box protein-1 is the crucial mediator of antifibrotic interferon-gamma effects. J Biol Chem. 2006;281:1784–95. https://doi.org/10.1074/jbc.M510215200.

    Article  CAS  PubMed  Google Scholar 

  69. Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res. 2019;379:119–28. https://doi.org/10.1016/j.yexcr.2019.03.027.

    Article  CAS  PubMed  Google Scholar 

  70. Huang, X., Yang, N., Fiore, V. F., Barker, T. H., Sun, Y., Morris, S. W., . . . Zhou, Y. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol (2012) 47, 340–348. https://doi.org/10.1165/rcmb.2012-0050OC.

  71. Hinz B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol. 2015;47:54–65. https://doi.org/10.1016/j.matbio.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  72. Sun Z, Guo SS, Fassler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215:445–56. https://doi.org/10.1083/jcb.201609037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schiller, H. B., Hermann, M. R., Polleux, J., Vignaud, T., Zanivan, S., Friedel, C. C., . . . Fassler, R. beta1- and alphav-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol (2013) 15, 625–636. https://doi.org/10.1038/ncb2747.

  74. Muppala S, Raghunathan VK, Jalilian I, Thomasy S, Murphy CJ. YAP and TAZ are distinct effectors of corneal myofibroblast transformation. Exp Eye Res. 2019;180:102–9. https://doi.org/10.1016/j.exer.2018.12.009.

    Article  CAS  PubMed  Google Scholar 

  75. Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol. 2020;16:11–31. https://doi.org/10.1038/s41584-019-0324-5.

    Article  CAS  PubMed  Google Scholar 

  76. • Lagares, D., Santos, A., Grasberger, P. E., Liu, F., Probst, C. K., Rahimi, R. A., . . . Tager, A. M. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci Transl Med (2017) 9. https://doi.org/10.1126/scitranslmed.aal3765. (Provides conceptual framework for targeting myofibroblast apoptosis as a treatment for fibrosis.)

  77. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63. https://doi.org/10.1038/nrm3722.

    Article  CAS  Google Scholar 

  78. Jafarinejad-Farsangi, S., Farazmand, A., Mahmoudi, M., Gharibdoost, F., Karimizadeh, E., Noorbakhsh, F., . . . Jamshidi, A. R. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity (2015) 48, 369–378. https://doi.org/10.3109/08916934.2015.1030616.

  79. Li, C. X., Talele, N. P., Boo, S., Koehler, A., Knee-Walden, E., Balestrini, J. L., . . . Hinz, B. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat Mater (2017) 16, 379–389. https://doi.org/10.1038/nmat4780.

  80. Badid, C., Vincent, M., McGregor, B., Melin, M., Hadj-Aissa, A., Veysseyre, C., . . . Laville, M. Mycophenolate mofetil reduces myofibroblast infiltration and collagen III deposition in rat remnant kidney. Kidney Int (2000) 58, 51–61. https://doi.org/10.1046/j.1523-1755.2000.00140.x.

  81. Roos N, Poulalhon N, Farge D, Madelaine I, Mauviel A, Verrecchia F. In vitro evidence for a direct antifibrotic role of the immunosuppressive drug mycophenolate mofetil. J Pharmacol Exp Ther. 2007;321:583–9. https://doi.org/10.1124/jpet.106.117051.

    Article  CAS  PubMed  Google Scholar 

  82. •• Khanna D, Denton CP, Jahreis A, van Laar JM, Frech TM, Anderson ME, Baron M, Chung L, Fierlbeck G, Lakshminarayanan S, Allanore Y, Pope JE, Riemekasten G, Steen V, Müller-Ladner U, Lafyatis R, Stifano G, Spotswood H, Chen-Harris H, Dziadek S, Morimoto A, Sornasse T, Siegel J, Furst DE. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet. 2016 Jun 25;387(10038):2630-2640. https://doi.org/10.1016/S0140-6736(16)00232-4. Epub 2016 May 5. Erratum in: Lancet. 2018 Apr 7;391(10128):1356. (Clinical trial demonstrating efficacy of tocilizumab in systemic sclerosis.)

  83. Roofeh D, Lescoat A, Khanna D. Treatment for systemic sclerosis-associated interstitial lung disease. Curr Opin Rheumatol. 2021;33:240–8. https://doi.org/10.1097/BOR.0000000000000795.

    Article  CAS  PubMed  Google Scholar 

  84. Kissin EY, Merkel PA, Lafyatis R. Myofibroblasts and hyalinized collagen as markers of skin disease in systemic sclerosis. Arthritis Rheum. 2006;54:3655–60. https://doi.org/10.1002/art.22186.

    Article  PubMed  Google Scholar 

  85. Ponsoye, M., Frantz, C., Ruzehaji, N., Nicco, C., Elhai, M., Ruiz, B., . . . Avouac, J. Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann Rheum Dis (2016) 75, 2142–2149. https://doi.org/10.1136/annrheumdis-2015-208213.

  86. Khanna, D., Spino, C., Johnson, S., Chung, L., Whitfield, M. L., Denton, C. P., . . . Furst, D. E. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase ii investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol (2020) 72, 125–136. https://doi.org/10.1002/art.41055.

  87. Yan J, Zhang Z, Yang J, Mitch WE, Wang Y. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. J Am Soc Nephrol. 2015;26:3060–71. https://doi.org/10.1681/ASN.2014070717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. •• Distler, O., Highland, K. B., Gahlemann, M., Azuma, A., Fischer, A., Mayes, M. D., . . . Maher, T. M. Nintedanib for systemic sclerosis–associated interstitial lung disease. New England J Med (2019) 380, 2518–2528. https://doi.org/10.1056/NEJMoa1903076. (Large clinical trial providing evidence of efficacy of nintedanib for SSc-ILD.)

  89. King, T. E., Jr., Bradford, W. Z., Castro-Bernardini, S., Fagan, E. A., Glaspole, I., Glassberg, M. K., . . . Group, A. S. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med (2014) 370, 2083–2092. https://doi.org/10.1056/NEJMoa1402582.

  90. Beon M, Harley RA, Wessels A, Silver RM, Ludwicka-Bradley A. Myofibroblast induction and microvascular alteration in scleroderma lung fibrosis. Clin Exp Rheumatol. 2004;22:733–42.

    CAS  PubMed  Google Scholar 

  91. Ludwicka, A., Trojanowska, M., Smith, E. A., Baumann, M., Strange, C., Korn, J. H., . . . Silver, R. M. Growth and characterization of fibroblasts obtained from bronchoalveolar lavage of patients with scleroderma. J Rheumatol (1992) 19, 1716–1723.

  92. Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45:1434–45. https://doi.org/10.1183/09031936.00174914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther. 2014;349:209–20. https://doi.org/10.1124/jpet.113.208223.

    Article  CAS  PubMed  Google Scholar 

  94. Hilberg, F., Roth, G. J., Krssak, M., Kautschitsch, S., Sommergruber, W., Tontsch-Grunt, U., . . . Rettig, W. J. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res (2008) 68, 4774–4782. https://doi.org/10.1158/0008-5472.CAN-07-6307.

  95. Richeldi, L., Costabel, U., Selman, M., Kim, D. S., Hansell, D. M., Nicholson, A. G., . . . du Bois, R. M. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med (2011) 365, 1079–1087. https://doi.org/10.1056/NEJMoa1103690.

  96. Richeldi, L., Cottin, V., Flaherty, K. R., Kolb, M., Inoue, Y., Raghu, G., . . . Collard, H. R. Design of the INPULSIS trials: two phase 3 trials of nintedanib in patients with idiopathic pulmonary fibrosis. Respir Med (2014) 108, 1023–1030. https://doi.org/10.1016/j.rmed.2014.04.011.

  97. Richeldi, L., du Bois, R. M., Raghu, G., Azuma, A., Brown, K. K., Costabel, U., . . . Investigators, I. T. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med (2014) 370, 2071–2082. https://doi.org/10.1056/NEJMoa1402584.

  98. Rosenbloom J, Jimenez SA. Molecular ablation of transforming growth factor beta signaling pathways by tyrosine kinase inhibition: the coming of a promising new era in the treatment of tissue fibrosis. Arthritis Rheum. 2008;58:2219–24. https://doi.org/10.1002/art.23634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mendoza FA, Piera-Velazquez S, Jimenez SA. Tyrosine kinases in the pathogenesis of tissue fibrosis in systemic sclerosis and potential therapeutic role of their inhibition. Transl Res. 2021;231:139–58. https://doi.org/10.1016/j.trsl.2021.01.001.

    Article  CAS  PubMed  Google Scholar 

  100. Beham-Schmid C, Apfelbeck U, Sill H, Tsybrovsky O, Hofler G, Haas OA, Linkesch W. Treatment of chronic myelogenous leukemia with the tyrosine kinase inhibitor STI571 results in marked regression of bone marrow fibrosis. Blood. 2002;99:381–3. https://doi.org/10.1182/blood.v99.1.381.

    Article  CAS  PubMed  Google Scholar 

  101. Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, Leof EB. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004;114:1308–16. https://doi.org/10.1172/JCI19603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Distler, J. H., Jungel, A., Huber, L. C., Schulze-Horsel, U., Zwerina, J., Gay, R. E., . . . Distler, O. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum (2007) 56, 311–322. https://doi.org/10.1002/art.22314.

  103. Akhmetshina, A., Venalis, P., Dees, C., Busch, N., Zwerina, J., Schett, G., . . . Distler, J. H. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum (2009) 60, 219–224. https://doi.org/10.1002/art.24186.

  104. Spiera, R. F., Gordon, J. K., Mersten, J. N., Magro, C. M., Mehta, M., Wildman, H. F., . . . Crow, M. K. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis (2011) 70, 1003–1009. https://doi.org/10.1136/ard.2010.143974.

  105. Khanna, D., Saggar, R., Mayes, M. D., Abtin, F., Clements, P. J., Maranian, P., . . . Furst, D. E. A one-year, phase I/IIa, open-label pilot trial of imatinib mesylate in the treatment of systemic sclerosis-associated active interstitial lung disease. Arthritis Rheum 63 (2011), 3540–3546. https://doi.org/10.1002/art.30548.

  106. Guo L, Chen XX, Gu YY, Zou HJ, Ye S. Low-dose imatinib in the treatment of severe systemic sclerosis: a case series of six Chinese patients and literature review. Clin Rheumatol. 2012;31:1395–400. https://doi.org/10.1007/s10067-012-2032-2.

    Article  PubMed  Google Scholar 

  107. Tamaki, Z., Asano, Y., Hatano, M., Yao, A., Kawashima, T., Tomita, M., . . . Sato, S. Efficacy of low-dose imatinib mesylate for cutaneous involvement in systemic sclerosis: a preliminary report of three cases. Mod Rheumatol (2012) 22, 94–99. https://doi.org/10.1007/s10165-011-0472-1.

  108. Gordon, J., Udeh, U., Doobay, K., Magro, C., Wildman, H., Davids, M., . . . Spiera, R. F. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 24-month open label, extension phase, single-centre trial. Clin Exp Rheumatol (2014) 32, S-189–193.

  109. Pope, J., McBain, D., Petrlich, L., Watson, S., Vanderhoek, L., de Leon, F., . . . Summers, K. Imatinib in active diffuse cutaneous systemic sclerosis: results of a six-month, randomized, double-blind, placebo-controlled, proof-of-concept pilot study at a single center. Arthritis Rheum (2011) 63, 3547–3551. https://doi.org/10.1002/art.30549.

  110. Prey, S., Ezzedine, K., Doussau, A., Grandoulier, A. S., Barcat, D., Chatelus, E., . . . Taieb, A. Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: a phase II multicentre randomized double-blinded controlled trial. Br J Dermatol (2012) 167, 1138–1144. https://doi.org/10.1111/j.1365-2133.2012.11186.x.

  111. Martyanov, V., Kim, G. J., Hayes, W., Du, S., Ganguly, B. J., Sy, O., . . . Varga, J. Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS One (2017) 12, e0187580. https://doi.org/10.1371/journal.pone.0187580.

  112. OzgurYurttas N, Eskazan AE. Dasatinib-induced pulmonary arterial hypertension. Br J Clin Pharmacol. 2018;84:835–45. https://doi.org/10.1111/bcp.13508.

    Article  CAS  Google Scholar 

  113. Gordon, J. K., Martyanov, V., Magro, C., Wildman, H. F., Wood, T. A., Huang, W. T., . . . Spiera, R. F. Nilotinib (Tasigna) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical trial. Arthritis Res Ther (2015) 17, 213. https://doi.org/10.1186/s13075-015-0721-3.

  114. Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. Am J Respir Cell Mol Biol. 2020;62:413–22. https://doi.org/10.1165/rcmb.2019-0328TR.

    Article  CAS  PubMed  Google Scholar 

  115. Lopez-de la Mora, D. A., Sanchez-Roque, C., Montoya-Buelna, M., Sanchez-Enriquez, S., Lucano-Landeros, S., Macias-Barragan, J. & Armendariz-Borunda, J. Role and new insights of pirfenidone in fibrotic diseases. Int J Med Sci (2015) 12 840–847. https://doi.org/10.7150/ijms.11579.

  116. Noble, P. W., Albera, C., Bradford, W. Z., Costabel, U., Glassberg, M. K., Kardatzke, D., . . . Group, C. S. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet (2011) 377, 1760-1769. https://doi.org/10.1016/S0140-6736(11)60405-4

  117. Khanna, D., Albera, C., Fischer, A., Khalidi, N., Raghu, G., Chung, L., . . . Gorina, E. An open-label, phase II study of the safety and tolerability of pirfenidone in patients with scleroderma-associated interstitial lung disease: the LOTUSS Trial. J Rheumatol (2016) 43, 1672-1679https://doi.org/10.3899/jrheum.151322

  118. Acharya N, Sharma SK, Mishra D, Dhooria S, Dhir V, Jain S. Efficacy and safety of pirfenidone in systemic sclerosis-related interstitial lung disease-a randomised controlled trial. Rheumatol Int. 2020;40:703–10. https://doi.org/10.1007/s00296-020-04565-w.

    Article  CAS  PubMed  Google Scholar 

  119. Rice, L. M., Padilla, C. M., McLaughlin, S. R., Mathes, A., Ziemek, J., Goummih, S., . . . Lafyatis, R. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest (2015) 125, 2795–2807. https://doi.org/10.1172/JCI77958.

  120. Wernig, G., Chen, S. Y., Cui, L., Van Neste, C., Tsai, J. M., Kambham, N., . . . Weissman, I. L. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci U S A (2017) 114, 4757–4762. https://doi.org/10.1073/pnas.1621375114.

  121. Lerbs, T., Cui, L., King, M. E., Chai, T., Muscat, C., Chung, L., . . . Wernig, G. CD47 prevents the elimination of diseased fibroblasts in scleroderma. JCI Insight (2020) 5. https://doi.org/10.1172/jci.insight.140458.

  122. • Cui, L., Chen, S. Y., Lerbs, T., Lee, J. W., Domizi, P., Gordon, S., . . . Wernig, G. Activation of JUN in fibroblasts promotes pro-fibrotic programme and modulates protective immunity. Nat Commun (2020) 11, 2795. https://doi.org/10.1038/s41467-020-16466-4. (Provides evidence for a novel role of role of modulating Jun and CD47 in treating lung fibrosis.)

  123. Advani, R., Flinn, I., Popplewell, L., Forero, A., Bartlett, N. L., Ghosh, N., . . . Smith, S. M. CD47 Blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med (2018) 379, 1711–1721. https://doi.org/10.1056/NEJMoa1807315.

  124. Zhang, W., Huang, Q., Xiao, W., Zhao, Y., Pi, J., Xu, H., . . . Jin, H. Advances in anti-tumor treatments targeting the CD47/SIRPalpha axis. Front Immunol (2020) 11, 18. https://doi.org/10.3389/fimmu.2020.00018.

  125. • Park, J. S., Oh, Y., Park, Y. J., Park, O., Yang, H., Slania, S., . . . Lee, S. Targeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma. Nat Commun (2019) 10, 1128. https://doi.org/10.1038/s41467-019-09101-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Korman MD.

Ethics declarations

Conflict of Interest

Anthony Ocon declares that he has no conflict of interest. Sravani Lokineni declares that she has no conflict of interest. Benjamin Korman declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocon, A., Lokineni, S. & Korman, B. Understanding and Therapeutically Targeting the Scleroderma Myofibroblast. Curr Treat Options in Rheum 8, 1–18 (2022). https://doi.org/10.1007/s40674-021-00189-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40674-021-00189-8

Keywords

Navigation