Skip to main content

Advertisement

Log in

Inhibiting Interferon Pathways in Dermatomyositis: Rationale and Preliminary Evidence

  • Other CTD: Inflammatory Myopathies and Sjogren’s (P Basharat and JFL Albayda, Section Editors)
  • Published:
Current Treatment Options in Rheumatology Aims and scope Submit manuscript

Abstract

Purpose of review

Dermatomyositis (DM) is a systemic autoimmune disease affecting multiple organs, including the skeletal muscle, skin, and lungs. Although DM disease mechanisms are incompletely understood, accumulating evidence suggests that interferons may play a significant role. Consequently, it is of considerable interest that drugs blocking the activity of interferons by inhibiting the Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) pathway have been approved for use in other autoimmune diseases. This manuscript will examine the IFN pathways and their importance in DM, review the existing literature on the use of JAK-STAT inhibitors in patients with adult or juvenile DM, and discuss the potential utility of JAK-STAT inhibitors to treat this disease.

Recent findings

Recent reports suggest that muscle and skin involvement in patients with either adult or juvenile DM responds favorably to JAK-STAT inhibitors. Moreover, preliminary data indicates that JAK-STAT inhibitors may be useful to treat clinical manifestations of this disease that are complicated to manage otherwise, such as calcinosis or rapidly progressive interstitial lung disease in DM patients with anti-MDA5 autoantibodies.

Summary

An increasing number of reports suggest that JAK-STAT inhibitors may be useful to treat the varied manifestations of adult and juvenile DM. However, as most studies were either small or lacked appropriate comparators, further research will be necessary to define the role of these drugs in DM treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Selva-O’Callaghan A, Pinal-Fernandez I, Trallero-Araguas E, Milisenda JC, Grau-Junyent JM, Mammen AL. Classification and management of adult inflammatory myopathies. Lancet Neurol. 2018;17(9):816–28. https://doi.org/10.1016/S1474-4422(18)30254-0.

    Article  PubMed  Google Scholar 

  2. Ghirardello A, Borella E, Beggio M, Franceschini F, Fredi M, Doria A. Myositis autoantibodies and clinical phenotypes. Auto Immun Highlights. 2014;5(3):69–75. https://doi.org/10.1007/s13317-014-0060-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zong M, Lundberg IE. Pathogenesis, classification and treatment of inflammatory myopathies. Nat Rev Rheumatol. 2011;7(5):297–306. https://doi.org/10.1038/nrrheum.2011.39.

    Article  CAS  PubMed  Google Scholar 

  4. Lahoria R, Selcen D, Engel AG. Microvascular alterations and the role of complement in dermatomyositis. Brain. 2016;139(Pt 7):1891–903. https://doi.org/10.1093/brain/aww122.

    Article  PubMed  Google Scholar 

  5. Sato S, Hoshino K, Satoh T, Fujita T, Kawakami Y, Fujita T, et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum. 2009;60(7):2193–200. https://doi.org/10.1002/art.24621.

    Article  CAS  PubMed  Google Scholar 

  6. Hoskins M. A protective action of neutropic against viscerotropic yellow fever virus in Macacus rhesus. Am J Trop Med Hyg. 1935;15:675–80.

    Article  Google Scholar 

  7. De Andrea M, Ravera R, Gioia D, Gariglio M, Landolfo S. The interferon system: an overview. Eur J Paediatr Neurol. 2002;6(Suppl A):A41–6; discussion A55-8. https://doi.org/10.1053/ejpn.2002.0573.

  8. Vilcek J. Fifty years of interferon research: aiming at a moving target. Immunity. 2006;25(3):343–8. https://doi.org/10.1016/j.immuni.2006.08.008.

    Article  CAS  PubMed  Google Scholar 

  9. Kalliolias GD, Ivashkiv LB. Overview of the biology of type I interferons. Arthritis Res Ther. 2010;12(Suppl 1):S1. https://doi.org/10.1186/ar2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li M, Liu X, Zhou Y, Su SB. Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol. 2009;86(1):23–32. https://doi.org/10.1189/jlb.1208761.

    Article  CAS  PubMed  Google Scholar 

  11. Stark GR, Kerr M, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.

    Article  CAS  Google Scholar 

  12. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–86. https://doi.org/10.1038/nri1604.

    Article  CAS  PubMed  Google Scholar 

  13. O'Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161–70. https://doi.org/10.1056/NEJMra1202117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leonard WJ, O'Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322. https://doi.org/10.1146/annurev.immunol.16.1.293.

    Article  CAS  PubMed  Google Scholar 

  15. Ghoreschi K, Laurence A, O'Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87. https://doi.org/10.1111/j.1600-065X.2008.00754.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62. https://doi.org/10.1038/nrm909.

    Article  CAS  PubMed  Google Scholar 

  17. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49. https://doi.org/10.1038/nri3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nallar SC, Kalvakolanu DV. Interferons, signal transduction pathways, and the central nervous system. J Interf Cytokine Res. 2014;34(8):559–76. https://doi.org/10.1089/jir.2014.0021.

    Article  CAS  Google Scholar 

  19. Higgs BW, Liu Z, White B, Zhu W, White WI, Morehouse C, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis. 2011;70(11):2029–36. https://doi.org/10.1136/ard.2011.150326.

    Article  CAS  PubMed  Google Scholar 

  20. Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57(5):664–78. https://doi.org/10.1002/ana.20464.

    Article  CAS  PubMed  Google Scholar 

  21. Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J, et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med. 2007;13(1-2):59–68. https://doi.org/10.2119/2006-00085.Baechler.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walsh RJ, Kong SW, Yao Y, Jallal B, Kiener PA, Pinkus JL, et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 2007;56(11):3784–92. https://doi.org/10.1002/art.22928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, Pak K, Plotz P, Miller FW, et al. Identification of distinctive interferon gene signatures in different types of myositis. Neurology. 2019;93(12):e1193–e204. https://doi.org/10.1212/WNL.0000000000008128Study describing the activation of the type I and type II interferon pathways in different types in myositis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niewold TB, Kariuki SN, Morgan GA, Shrestha S, Pachman LM. Elevated serum interferon-alpha activity in juvenile dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum. 2009;60(6):1815–24. https://doi.org/10.1002/art.24555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Connor KA, Abbott KA, Sabin B, Kuroda M, Pachman LM. MxA gene expression in juvenile dermatomyositis peripheral blood mononuclear cells: association with muscle involvement. Clin Immunol. 2006;120(3):319–25. https://doi.org/10.1016/j.clim.2006.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tezak Z, Hoffman EP, Lutz JL, Fedczyna TO, Stephan D, Bremer EG, et al. Gene expression profiling in DQA1*0501+ children with untreated dermatomyositis: a novel model of pathogenesis. J Immunol. 2002;168(8):4154–63. https://doi.org/10.4049/jimmunol.168.8.4154.

    Article  CAS  PubMed  Google Scholar 

  27. Wong D, Kea B, Pesich R, Higgs BW, Zhu W, Brown P, et al. Interferon and biologic signatures in dermatomyositis skin: specificity and heterogeneity across diseases. PLoS One. 2012;7(1):e29161. https://doi.org/10.1371/journal.pone.0029161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greenberg SA, Higgs BW, Morehouse C, Walsh RJ, Kong SW, Brohawn P, et al. Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun. 2012;13(3):207–13. https://doi.org/10.1038/gene.2011.61.

    Article  CAS  PubMed  Google Scholar 

  29. • Rigolet M, Hou C, Baba Amer Y, Aouizerate J, Periou B, Gherardi RK, et al. Distinct interferon signatures stratify inflammatory and dysimmune myopathies. RMD Open. 2019;5(1):e000811. https://doi.org/10.1136/rmdopen-2018-000811Study describing the activation of the type I and type II interferon pathways in different types in myositis.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Damsky W, Peterson D, Ramseier J, Al-Bawardy B, Chun H, Proctor DSV, et al. The emerging role of Janus kinase inhibitors in the treatment of autoimmune and inflammatory diseases. J Allergy Clin Immunol. 2020;147(3):814–26. https://doi.org/10.1016/j.jaci.2020.10.022.

    Article  CAS  PubMed  Google Scholar 

  31. Riedy MC, Dutra AS, Blake TB, Modi W, Lal BK, Davis J, et al. Genomic sequence, organization, and chromosomal localization of human JAK3. Genomics. 1996;37(1):57–61. https://doi.org/10.1006/geno.1996.0520.

    Article  CAS  PubMed  Google Scholar 

  32. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–43. https://doi.org/10.4049/jimmunol.1003668.

    Article  CAS  PubMed  Google Scholar 

  33. Berekmeri A, Mahmood F, Wittmann M, Helliwell P. Tofacitinib for the treatment of psoriasis and psoriatic arthritis. Expert Rev Clin Immunol. 2018;14(9):719–30. https://doi.org/10.1080/1744666X.2018.1512404.

    Article  CAS  PubMed  Google Scholar 

  34. Sandborn WJ, Ghosh S, Panes J, Vranic I, Wang W, Niezychowski W, et al. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2014;12(9):1485–93 e2. https://doi.org/10.1016/j.cgh.2014.01.029.

  35. Xeljanz [package insert]. Pfizer Inc. http://labeling.pfizer.com/ShowLabeling.aspx?id=959.

  36. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28. https://doi.org/10.1146/annurev-med-051113-024537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117–27. https://doi.org/10.1056/NEJMoa1002028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807. https://doi.org/10.1056/NEJMoa1110557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abedin SM, Hamadani M. Ruxolitinib: a potential treatment for corticosteroid refractory acute graft-versus-host disease. Expert Opin Investig Drugs. 2020;29(5):423–7. https://doi.org/10.1080/13543784.2020.1757069.

    Article  CAS  PubMed  Google Scholar 

  40. Fridman JS, Scherle PA, Collins R, Burn TC, Li Y, Li J, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184(9):5298–307. https://doi.org/10.4049/jimmunol.0902819.

    Article  CAS  PubMed  Google Scholar 

  41. Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014;57(12):5023–38. https://doi.org/10.1021/jm401490p.

    Article  CAS  PubMed  Google Scholar 

  42. Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995;270(5237):797–800. https://doi.org/10.1126/science.270.5237.797.

    Article  CAS  PubMed  Google Scholar 

  43. Namour F, Desrivot J, Van der Aa A, Harrison P, Tasset C, van't Klooster G. Clinical confirmation that the selective JAK1 inhibitor Filgotinib (GLPG0634) has a low liability for drug-drug interactions. Drug Metab Lett. 2016;10(1):38–48. https://doi.org/10.2174/1872312810666151223103353.

    Article  CAS  PubMed  Google Scholar 

  44. Van Rompaey L, Galien R, van der Aar EM, Clement-Lacroix P, Nelles L, Smets B, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol. 2013;191(7):3568–77. https://doi.org/10.4049/jimmunol.1201348.

    Article  CAS  PubMed  Google Scholar 

  45. Vermeire S, Schreiber S, Petryka R, Kuehbacher T, Hebuterne X, Roblin X, et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet. 2017;389(10066):266–75. https://doi.org/10.1016/S0140-6736(16)32537-5.

    Article  CAS  PubMed  Google Scholar 

  46. Kavanaugh A, Westhovens RR, Winthrop KL, Lee SJ, Tan Y, An D, et al. Safety and efficacy of filgotinib: Up to 4-year results from an open-label extension study of phase II rheumatoid arthritis programs. J Rheumatol. 2021. https://doi.org/10.3899/jrheum.201183

  47. Westhovens R, Taylor PC, Alten R, Pavlova D, Enriquez-Sosa F, Mazur M, et al. Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann Rheum Dis. 2017;76(6):998–1008. https://doi.org/10.1136/annrheumdis-2016-210104.

    Article  CAS  PubMed  Google Scholar 

  48. Hornung T, Janzen V, Heidgen FJ, Wolf D, Bieber T, Wenzel J. Remission of recalcitrant dermatomyositis treated with ruxolitinib. N Engl J Med. 2014;371(26):2537–8. https://doi.org/10.1056/NEJMc1412997.

    Article  PubMed  Google Scholar 

  49. Kurtzman DJ, Wright NA, Lin J, Femia AN, Merola JF, Patel M, et al. Tofacitinib citrate for refractory cutaneous dermatomyositis: an alternative treatment. JAMA Dermatol. 2016;152(8):944–5. https://doi.org/10.1001/jamadermatol.2016.0866.

    Article  PubMed  Google Scholar 

  50. Anyanwu CO, Fiorentino DF, Chung L, Dzuong C, Wang Y, Okawa J, et al. Validation of the Cutaneous Dermatomyositis Disease Area and Severity Index: characterizing disease severity and assessing responsiveness to clinical change. Br J Dermatol. 2015;173(4):969–74. https://doi.org/10.1111/bjd.13915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paik JJ, Christopher-Stine L. A case of refractory dermatomyositis responsive to tofacitinib. Semin Arthritis Rheum. 2017;46(4):e19. https://doi.org/10.1016/j.semarthrit.2016.08.009.

    Article  PubMed  Google Scholar 

  52. Rider LG, Giannini EH, Brunner HI, Ruperto N, James-Newton L, Reed AM, et al. International consensus on preliminary definitions of improvement in adult and juvenile myositis. Arthritis Rheum. 2004;50(7):2281–90. https://doi.org/10.1002/art.20349.

    Article  PubMed  Google Scholar 

  53. •• Paik JJ, Albayda J, Tiniakou E, Koenig A, Christopher-Stine A. Study of Tofacitinib in refractory dermatomyositis (STIR): an open label pilot study in refractory dermatomyositis. 2018 ACR/ARHP Annual Meeting. 2018. First clinical trial using tofacitinib in refractory dermatomyositis.

  54. •• Ladislau L, Suarez-Calvet X, Toquet S, Landon-Cardinal O, Amelin D, Depp M, et al. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain. 2018;141(6):1609–21. https://doi.org/10.1093/brain/awy105Comprehensive study describing the the efficacy of ruxolitinib in dermatomyositis.

    Article  PubMed  Google Scholar 

  55. Sato S, Hirakata M, Kuwana M, Suwa A, Inada S, Mimori T, et al. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 2005;52(5):1571–6. https://doi.org/10.1002/art.21023.

    Article  CAS  PubMed  Google Scholar 

  56. Kameda H, Nagasawa H, Ogawa H, Sekiguchi N, Takei H, Tokuhira M, et al. Combination therapy with corticosteroids, cyclosporin A, and intravenous pulse cyclophosphamide for acute/subacute interstitial pneumonia in patients with dermatomyositis. J Rheumatol. 2005;32(9):1719–26.

    CAS  PubMed  Google Scholar 

  57. Kawachi Y, Maruyama H, Furuta J, Fujisawa Y, Nakamura Y, Takahashi T, et al. Cutaneous deep necrosis with dermatomyositis: correlation with interstitial pneumonia. Eur J Dermatol. 2007;17(4):345–6. https://doi.org/10.1684/ejd.2007.0220.

    Article  PubMed  Google Scholar 

  58. Chaisson NF, Paik J, Orbai AM, Casciola-Rosen L, Fiorentino D, Danoff S, et al. A novel dermato-pulmonary syndrome associated with MDA-5 antibodies: report of 2 cases and review of the literature. Medicine (Baltimore). 2012;91(4):220–8. https://doi.org/10.1097/MD.0b013e3182606f0b.

    Article  Google Scholar 

  59. Kurasawa K, Arai S, Namiki Y, Tanaka A, Takamura Y, Owada T, et al. Tofacitinib for refractory interstitial lung diseases in anti-melanoma differentiation-associated 5 gene antibody-positive dermatomyositis. Rheumatology (Oxford). 2018;57(12):2114–9. https://doi.org/10.1093/rheumatology/key188.

    Article  CAS  Google Scholar 

  60. Kato M, Ikeda K, Kageyama T, Kasuya T, Kumagai T, Furuya H, et al. Successful treatment for refractory interstitial lung disease and pneumomediastinum with multidisciplinary therapy including tofacitinib in a patient with anti-MDA5 antibody-positive dermatomyositis. J Clin Rheumatol. 2019. https://doi.org/10.1097/RHU.0000000000000984.

  61. •• Chen Z, Wang X, Ye S. Tofacitinib in amyopathic dermatomyositis-associated interstitial lung disease. N Engl J Med. 2019;381(3):291–3. https://doi.org/10.1056/NEJMc1900045Study showing evidence that tofacitinib may prevent the progression of the interstitial lung disease in patients anti-MDA5 dermatomyositis.

    Article  PubMed  Google Scholar 

  62. Wendel S, Venhoff N, Frye BC, May AM, Agarwal P, Rizzi M, et al. Successful treatment of extensive calcifications and acute pulmonary involvement in dermatomyositis with the Janus-Kinase inhibitor tofacitinib — a report of two cases. J Autoimmun. 2019;100:131–6. https://doi.org/10.1016/j.jaut.2019.03.003.

    Article  CAS  PubMed  Google Scholar 

  63. Ishikawa Y, Kasuya T, Fujiwara M, Kita Y. Tofacitinib for recurrence of antimelanoma differentiation-associated gene 5 antibody-positive clinically amyopathic dermatomyositis after remission: a case report. Medicine (Baltimore). 2020;99(37):e21943. https://doi.org/10.1097/MD.0000000000021943.

    Article  Google Scholar 

  64. Aeschlimann FA, Fremond ML, Duffy D, Rice GI, Charuel JL, Bondet V, et al. A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain. 2018;141(11):e80. https://doi.org/10.1093/brain/awy255.

    Article  PubMed  Google Scholar 

  65. Papadopoulou C, Hong Y, Omoyinmi E, Brogan PA, Eleftheriou D. Janus kinase 1/2 inhibition with baricitinib in the treatment of juvenile dermatomyositis. Brain. 2019;142(3):e8. https://doi.org/10.1093/brain/awz005.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sabbagh S, Almeida de Jesus A, Hwang S, Kuehn HS, Kim H, Jung L, et al. Treatment of anti-MDA5 autoantibody-positive juvenile dermatomyositis using tofacitinib. Brain. 2019;142(11):e59. https://doi.org/10.1093/brain/awz293.

    Article  PubMed  PubMed Central  Google Scholar 

  67. •• Kim H, Dill S, O'Brien M, Vian L, Li X, Manukyan M, et al. Janus kinase (JAK) inhibition with baricitinib in refractory juvenile dermatomyositis. Ann Rheum Dis. 2020. https://doi.org/10.1136/annrheumdis-2020-218690First clinical trial showing evidence that baricitinib may be effective in patients with refractory juvenile dermatomyositis.

  68. Yu Z, Wang L, Quan M, Zhang T, Song H. Successful management with Janus kinase inhibitor tofacitinib in refractory juvenile dermatomyositis: a pilot study and literature review. Rheumatology (Oxford). 2020. https://doi.org/10.1093/rheumatology/keaa558.

  69. Mukamel M, Horev G, Mimouni M. New insight into calcinosis of juvenile dermatomyositis: a study of composition and treatment. J Pediatr. 2001;138(5):763–6. https://doi.org/10.1067/mpd.2001.112473.

    Article  CAS  PubMed  Google Scholar 

  70. Albayda J, Pinal-Fernandez I, Huang W, Parks C, Paik J, Casciola-Rosen L, et al. Antinuclear matrix protein 2 autoantibodies and edema, muscle disease, and malignancy risk in dermatomyositis patients. Arthritis Care Res. 2017;69(11):1771–6. https://doi.org/10.1002/acr.23188.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (AR-041203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iago Pinal-Fernandez MD, PhD, PhD or Andrew L. Mammen MD, PhD.

Ethics declarations

Conflict of Interest

Maria Casal-Dominguez declares that she has no conflict of interest. Iago Pinal-Fernandez declares that he has no conflict of interest. Andrew L. Mammen declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Other CTD: Inflammatory Myopathies and Sjogren’s

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casal-Dominguez, M., Pinal-Fernandez, I. & Mammen, A.L. Inhibiting Interferon Pathways in Dermatomyositis: Rationale and Preliminary Evidence. Curr Treat Options in Rheum 7, 258–271 (2021). https://doi.org/10.1007/s40674-021-00182-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40674-021-00182-1

Keywords

Navigation