Skip to main content
Log in

Possibilities and limitations of three-dimensional reconstruction and simulation techniques to identify patterns, rhythms and functions of apoptosis in the early developing neural tube

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

The now classical idea that programmed cell death (apoptosis) contributes to a plethora of developmental processes still has lost nothing of its impact. It is, therefore, important to establish effective three-dimensional (3D) reconstruction as well as simulation techniques to decipher the exact patterns and functions of such apoptotic events. The present study focuses on the question whether and how apoptosis promotes neurulation-associated processes in the spinal cord of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia). Our 3D reconstructions demonstrate that at least two craniocaudal waves of apoptosis consecutively pass through the dorsal spinal cord. The first wave appears to be involved in neural fold fusion and/or in selection processes among premigratory neural crest cells. The second one seems to assist in establishing the dorsal signaling center known as the roof plate. In the hindbrain, in contrast, apoptosis among premigratory neural crest cells progresses craniocaudally but discontinuously, in a segment-specific manner. Unlike apoptosis in the spinal cord, these segment-specific apoptotic events, however, precede later ones that seemingly support neural fold fusion and/or postfusion remodeling. Arguing with Whitehead that biological patterns and rhythms differ in that biological rhythms depend “upon the differences involved in each exhibition of the pattern” (Whitehead in An enquiry concerning the principles of natural knowledge. Cambridge University Press, London, 1919, p. 198) we show that 3D reconstruction and simulation techniques can contribute to distinguish between (static) patterns and (dynamic) rhythms of apoptosis. By deciphering novel patterns and rhythms of developmental apoptosis, our reconstructions help to reconcile seemingly inconsistent earlier findings in chick and mouse embryos, and to create rules for computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adelmann, H. B. (1925). The development of the neural folds and cranial ganglia of the rat. Journal of Comparative Neurology, 39(1), 19–171.

    Google Scholar 

  • Ansari, B., Coates, P. J., Greenstein, B. D., & Hall, P. A. (1993). In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. Journal of Pathology, 170(1), 1–8.

    Google Scholar 

  • Asher, R. J., Bennett, N., & Lehmann, T. (2009). The new framework for understanding placental mammal evolution. BioEssays, 31(8), 853–864.

    Google Scholar 

  • Barrow, J. R., Stadler, H. S., & Capecchi, M. R. (2000). Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development, 127(5), 933–944.

    Google Scholar 

  • Boissonnat, J. D. (1988). Shape reconstruction from planar cross sections. Computer Vision Graphics and Image Processing, 44, 1–29.

    Google Scholar 

  • Bronner-Fraser, M. (1986). Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Developmental Biology, 115(1), 44–55.

    Google Scholar 

  • Brunnett, G., Vančo, M., Haller, C., Washausen, S., Kuhn, H.-J., & Knabe, W. (2003). Visualization of cross sectional data for morphogenetic studies. In K. R. Dittrich, W. König, A. Oberweis, K. Rannenberg, & W. Wahlster (Eds.), Informatik 2003: Innovative Informatikanwendungen (Vol. 1, pp. 354–359). GI-Edition: Lecture notes in informatics, P-34. Bonn: Köllen.

    Google Scholar 

  • Chizhikov, V. V., & Millen, K. J. (2004). Mechanisms of roof plate formation in the vertebrate CNS. Nature Reviews Neuroscience, 5(10), 808–812.

    Google Scholar 

  • Choi, D.-S., Ward, S. J., Messaddeq, N., Launay, J.-M., & Maroteaux, L. (1997). 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development, 124(9), 1745–1755.

    Google Scholar 

  • Clarke, J. (2009). Live imaging of development in fish embryos. Seminars in Cell & Developmental Biology, 20(8), 942–946.

    Google Scholar 

  • Copp, A. J., Stanier, P., & Greene, N. D. E. (2013). Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurology, 12(8), 799–810.

    Google Scholar 

  • de Medeiros, G., Balázs, B., & Hufnagel, L. (2016). Light-sheet imaging of mammalian development. Seminars in Cell & Developmental Biology, 55, 148–155.

    Google Scholar 

  • Diamantis, A., Magiorkinis, E., Sakorafas, G. H., & Androutsos, G. (2008). A brief history of apoptosis: From ancient to modern times. Onkologie, 31(12), 702–706.

    Google Scholar 

  • Dunty, W. C., Jr., Zucker, R. M., & Sulik, K. K. (2002). Hindbrain and cranial nerve dysmorphogenesis result from acute maternal ethanol administration. Developmental Neuroscience, 24(4), 328–342.

    Google Scholar 

  • Duprez, L., Wirawan, E., Vanden Berghe, T., & Vandenabeele, P. (2009). Major cell death pathways at a glance. Microbes and Infection, 11(13), 1050–1062.

    Google Scholar 

  • Ellies, D. L., Church, V., Francis-West, P., & Lumsden, A. (2000). The WNT antagonist cSFRP2 modulates programmed cell death in the developing hindbrain. Development, 127(24), 5285–5295.

    Google Scholar 

  • Erickson, C. A., & Weston, J. A. (1983). An SEM analysis of neural crest migration in the mouse. Journal of Embryology and Experimental Morphology, 74, 97–118.

    Google Scholar 

  • Ernst, M. (1926). Über Untergang von Zellen während der normalen Entwicklung bei Wirbeltieren. Zeitschrift für Anatomie und Entwicklungsgeschichte, 79(1–2), 228–262.

    Google Scholar 

  • Farlie, P. G., Kerr, R., Thomas, P., Symes, T., Minichiello, J., Hearn, C. J., et al. (1999). A paraxial exclusion zone creates patterned cranial neural crest cell outgrowth adjacent to rhombomeres 3 and 5. Developmental Biology, 213(1), 70–84.

    Google Scholar 

  • Gammill, L. S., & Bronner-Fraser, M. (2003). Neural crest specification: migrating into genomics. Nature Reviews Neuroscience, 4(10), 795–805.

    Google Scholar 

  • Gavrieli, Y., Sherman, Y., & Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Journal of Cell Biology, 119(3), 493–501.

    Google Scholar 

  • Geelen, J. A. G., & Langman, J. (1977). Closure of the neural tube in the cephalic region of the mouse embryo. Anatomical Record, 189(4), 625–640.

    Google Scholar 

  • Geelen, J. A. G., & Langman, J. (1979). Ultrastructural observations on closure of the neural tube in the mouse. Anatomy and Embryology, 156(1), 73–88.

    Google Scholar 

  • Glücksmann, A. (1930). Über die Bedeutung von Zellvorgängen für die Formbildung epithelialer Organe. Zeitschrift für Anatomie und Entwicklungsgeschichte, 93(1–2), 35–92.

    Google Scholar 

  • Glücksmann, A. (1940). Development and differentiation of the tadpole eye. British Journal of Ophthalmology, 24(4), 153–178.

    Google Scholar 

  • Glücksmann, A. (1951). Cell deaths in normal vertebrate ontogeny. Biological Reviews of the Cambridge Philosophical Society, 26(1), 59–86.

    Google Scholar 

  • Graham, A., Francis-West, P., Brickell, P., & Lumsden, A. (1994). The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature, 372(6507), 684–686.

    Google Scholar 

  • Graham, A., Heyman, I., & Lumsden, A. (1993). Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain. Development, 119(1), 233–245.

    Google Scholar 

  • Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bukowska, K., Bursch, W., & Schulte-Hermann, R. (1995). In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology, 21(5), 1465–1468.

    Google Scholar 

  • Greene, N. D. E., Stanier, P., & Copp, A. J. (2009). Genetics of human neural tube defects. Human Molecular Genetics, 18(2), R113–R129.

    Google Scholar 

  • Häcker, G. (2000). The morphology of apoptosis. Cell and Tissue Research, 301(1), 5–17.

    Google Scholar 

  • Holmdahl, D. E. (1928). Die Entstehung und weitere Entwicklung der Neuralleiste (Ganglienleiste) bei Vögeln und Säugetieren. Zeitschrift für mikroskopisch-anatomische Forschung, 14, 99–298.

    Google Scholar 

  • Homma, S., Yaginuma, H., & Oppenheim, R. W. (1994). Programmed cell death during the earliest stages of spinal cord development in the chick embryo: A possible means of early phenotypic selection. Journal of Comparative Neurology, 345(3), 377–395.

    Google Scholar 

  • Houston, M. L. (1968). The early brain development of the dog. Journal of Comparative Neurology, 134(3), 371–383.

    Google Scholar 

  • Hoving, E. W., Vermeij-Keers, C., Mommaas-Kienhuis, A. M., & Hartwig, N. G. (1990). Separation of neural and surface ectoderm after closure of the rostral neuropore. Anatomy and Embryology, 182(5), 455–463.

    Google Scholar 

  • Hu, Z., Yuri, K., Ozawa, H., Lu, H., & Kawata, M. (1997). The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. Journal of Neuroscience, 17(11), 3981–3989.

    Google Scholar 

  • Hutson, M. S., Leung, M. C. K., Baker, N. C., Spencer, R. M., & Knudsen, T. B. (2017). Computational model of secondary palate fusion and disruption. Chemical Research in Toxicology, 30(4), 965–979.

    Google Scholar 

  • Isner, J. M., Kearney, M., Bortman, S., & Passeri, J. (1995). Apoptosis in human atherosclerosis and restenosis. Circulation, 91(11), 2703–2711.

    Google Scholar 

  • Jeffs, P., Jaques, K., & Osmond, M. (1992). Cell death in cranial neural crest development. Anatomy and Embryology, 185(6), 583–588.

    Google Scholar 

  • Johnson, C. Y., Honein, M. A., Flanders, W. D., Howards, P. P., Oakley, G. P., & Rasmussen, S. A. (2012). Pregnancy termination following prenatal diagnosis of anencephaly or spina bifida: A systematic review of the literature. Birth Defects Research Part A: Clinical and Molecular Teratology, 94(11), 857–863.

    Google Scholar 

  • Kaufman, M. H., Brune, R. M., Baldock, R. A., Bard, J. B. L., & Davidson, D. (1997). Computer-aided 3-D reconstruction of serially sectioned mouse embryos: its use in integrating anatomical organization. International Journal of Developmental Biology, 41(2), 223–233.

    Google Scholar 

  • Kerr, J. F. R. (2002). History of the events leading to the formulation of the apoptosis concept. Toxicology, 181–182, 471–474.

    Google Scholar 

  • Kerr, J. F. R., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26(4), 239–257.

    Google Scholar 

  • Kienel, E., Vančo, M., Brunnett, G., Kowalski, T., Clauß, R., & Knabe, W. (2008). A framework for the visualization of cross sectional data in biomedical research. In L. Linsen, H. Hagen, & B. Hamann (Eds.), Visualization in medicine and life sciences. Mathematics and visualization (pp. 77–97). Berlin: Springer.

    Google Scholar 

  • Kiraz, Y., Adan, A., Kartal Yandim, M., & Baran, Y. (2016). Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biology, 37(7), 8471–8486.

    Google Scholar 

  • Kitanaka, C., & Kuchino, Y. (1999). Caspase-independent programmed cell death with necrotic morphology. Cell Death and Differentiation, 6(6), 508–515.

    Google Scholar 

  • Knabe, W., & Kuhn, H.-J. (1998). Pattern of cell death during optic cup formation in the tree shrew Tupaia belangeri. Journal of Comparative Neurology, 401(3), 352–366.

    Google Scholar 

  • Knabe, W., Süss, M., & Kuhn, H.-J. (2000). The patterns of cell death and of macrophages in the developing forebrain of the tree shrew Tupaia belangeri. Anatomy and Embryology, 201(3), 157–168.

    Google Scholar 

  • Knabe, W., & Washausen, S. (2015). Early development of the nervous system of the eutherian Tupaia belangeri. Primate Biology. https://doi.org/10.5194/pb-2-25-2015.

    Article  Google Scholar 

  • Knabe, W., Washausen, S., Brunnett, G., & Kuhn, H.-J. (2002). Use of “reference series” to realign histological serial sections for three-dimensional reconstructions of the positions of cellular events in the developing brain. Journal of Neuroscience Methods, 121, 169–180.

    Google Scholar 

  • Knabe, W., Washausen, S., Brunnett, G., & Kuhn, H.-J. (2004). Rhombomere-specific patterns of apoptosis in the tree shrew Tupaia belangeri. Cell and Tissue Research, 316(1), 1–13.

    Google Scholar 

  • Knabe, W., Washausen, S., Happel, N., & Kuhn, H.-J. (2007). Development of starburst cholinergic amacrine cells in the retina of Tupaia belangeri. Journal of Comparative Neurology, 502(4), 584–597.

    Google Scholar 

  • Knabe, W., Washausen, S., Happel, N., & Kuhn, H.-J. (2008). Diversity in mammalian chiasmatic architecture: Ipsilateral axons are deflected at glial arches in the prechiasmatic optic nerve of the eutherian Tupaia belangeri. Journal of Comparative Neurology, 508(3), 437–457.

    Google Scholar 

  • Kocsis, E., Trus, B. L., Steer, C. J., Bisher, M. E., & Steven, A. C. (1991). Image averaging of flexible fibrous macromolecules: The clathrin triskelion has an elastic proximal segment. Journal of Structural Biology, 107(1), 6–14.

    Google Scholar 

  • Kotch, L. E., & Sulik, K. K. (1992). Patterns of ethanol-induced cell death in the developing nervous system of mice; neural fold states through the time of anterior neural tube closure. International Journal of Developmental Neuroscience, 10(4), 273–279.

    Google Scholar 

  • Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J., & Hufnagel, L. (2012). Multiview light-sheet microscope for rapid in toto imaging. Nature Methods, 9(7), 730–733.

    Google Scholar 

  • Labat-Moleur, F., Guillermet, C., Lorimier, P., Robert, C., Lantuejoul, S., Brambilla, E., et al. (1998). TUNEL apoptotic cell detection in tissue sections: Critical evaluation and improvement. Journal of Histochemistry and Cytochemistry, 46(3), 327–334.

    Google Scholar 

  • Lawson, A., & England, M. A. (1998). Neural fold fusion in the cranial region of the chick embryo. Developmental Dynamics, 212(4), 473–481.

    Google Scholar 

  • Lawson, A., Schoenwolf, G. C., England, M. A., Addai, F. K., & Ahima, R. S. (1999). Programmed cell death and the morphogenesis of the hindbrain roof plate in the chick embryo. Anatomy and Embryology, 200(5), 509–519.

    Google Scholar 

  • Luengo-Oroz, M. A., Ledesma-Carbayo, M. J., Peyriéras, N., & Santos, A. (2011). Image analysis for understanding embryo development: A bridge from microscopy to biological insights. Current Opinion in Genetics & Development, 21(5), 630–637.

    Google Scholar 

  • Lumsden, A., Sprawson, N., & Graham, A. (1991). Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development, 113(4), 1281–1291.

    Google Scholar 

  • Maden, M., Graham, A., Gale, E., Rollinson, C., & Zile, M. (1997). Positional apoptosis during vertebrate CNS development in the absence of endogenous retinoids. Development, 124(14), 2799–2805.

    Google Scholar 

  • Marin-Padilla, M. (1970). The closure of the neural tube in the golden hamster. Teratology, 3(1), 39–45.

    Google Scholar 

  • Marin-Riera, M., Brun-Usan, M., Zimm, R., Välikangas, T., & Salazar-Ciudad, I. (2016). Computational modeling of development by epithelia, mesenchyme and their interactions: A unified model. Bioinformatics, 32(2), 219–225.

    Google Scholar 

  • Massa, V., Savery, D., Ybot-Gonzalez, P., Ferraro, E., Rongvaux, A., Cecconi, F., et al. (2009). Apoptosis is not required for mammalian neural tube closure. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8233–8238.

    Google Scholar 

  • Morriss-Kay, G. M. (1981). Growth and development of pattern in the cranial neural epithelium of rat embryos during neurulation. Journal of Embryology and Experimental Morphology, 65(Suppl), 225–241.

    Google Scholar 

  • Müller, F., & O’Rahilly, R. (1985). The first appearance of the neural tube and optic primordium in the human embryo at stage 10. Anatomy and Embryology, 172(2), 157–169.

    Google Scholar 

  • Nichols, D. H. (1981). Neural crest formation in the head of the mouse embryo as observed using a new histological technique. Journal of Embryology and Experimental Morphology, 64, 105–120.

    Google Scholar 

  • Nichols, D. H. (1986). Formation and distribution of neural crest mesenchyme to the first pharyngeal arch region of the mouse embryo. The American Journal of Anatomy, 176(2), 221–231.

    Google Scholar 

  • Nicotera, P., & Leist, M. (1997). Energy supply and the shape of death in neurons and lymphoid cells. Cell Death and Differentiation, 4(6), 435–442.

    Google Scholar 

  • Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P., & Dollé, P. (2000). Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development, 127(1), 75–85.

    Google Scholar 

  • Nikolopoulou, E., Galea, G. L., Rolo, A., Greene, N. D. E., & Copp, A. J. (2017). Neural tube closure: Cellular, molecular and biomechanical mechanisms. Development, 144(4), 552–566.

    Google Scholar 

  • Nissen, S. B., Perera, M., Gonzalez, J. M., Morgani, S. M., Jensen, M. H., Sneppen, K., et al. (2017). Four simple rules that are sufficient to generate the mammalian blastocyst. PLoS Biology, 15(7), e2000737.

    Google Scholar 

  • Nonomura, K., Yamaguchi, Y., Hamachi, M., Koike, M., Uchiyama, Y., Nakazato, K., et al. (2013). Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Developmental Cell, 27(6), 621–634.

    Google Scholar 

  • Ostrom, L., Tang, M.-J., Gruss, P., & Dressler, G. R. (2000). Reduced Pax2 gene dosage increases apoptosis and slows the progression of renal cystic disease. Developmental Biology, 219(2), 250–258.

    Google Scholar 

  • Penaloza, C., Lin, L., Lockshin, R. A., & Zakeri, Z. (2006). Cell death in development: shaping the embryo. Histochemistry and Cell Biology, 126(2), 149–158.

    Google Scholar 

  • Power, R. M., & Huisken, J. (2017). A guide to light-sheet fluorescence microscopy for multiscale imaging. Nature Methods, 14(4), 360–373.

    Google Scholar 

  • Rabinovitch, M. (1995). Professional and non-professional phagocytes: an introduction. Trends in Cell Biology, 5(3), 85–87.

    Google Scholar 

  • Rasband, W. S. (1997–2016). ImageJ. US National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/.

  • Romeis, B. (1989). Heidenhains Eisenhämatoxylin. In P. Böck (Ed.), Mikroskopische Technik (pp. 219–220). Baltimore: Urban-Schwarzenberg.

    Google Scholar 

  • Römer, S., Bender, H., Knabe, W., Zimmermann, E., Rübsamen, R., Seeger, J., et al. (2018). Neural progenitors in the developing neocortex of the northern tree shrew (Tupaia belangeri) show a closer relationship to gyrencephalic primates than to lissencephalic rodents. Frontiers in Neuroanatomy, 12, 29.

    Google Scholar 

  • Rossel, M., & Capecchi, M. R. (1999). Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development, 126(22), 5027–5040.

    Google Scholar 

  • Ruijter, J. M., Soufan, A. T., Hagoort, J., & Moorman, A. F. (2004). Molecular imaging of the embryonic heart: Fables and facts on 3D imaging of gene expression patterns. Birth Defects Research Part C: Embryo Today, 72(3), 224–240.

    Google Scholar 

  • Ryoo, H. D., & Steller, H. (2005). Developmental apoptosis in health and disease. In M. Holcik, E. C. LaCasse, A. E. MacKenzie, & R. G. Korneluk (Eds.), Apoptosis in health and disease: Clinical and therapeutic aspects (pp. 49–74). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sadler, T. W. (1978). Distribution of surface coat material on fusing neural folds of mouse embryos during neurulation. Anatomical Record, 191(3), 345–349.

    Google Scholar 

  • Saiz, N., Plusa, B., & Hadjantonakis, A.-K. (2015). Single cells get together: High-resolution approaches to study the dynamics of early mouse development. Seminars in Cell & Developmental Biology, 47–48, 92–100.

    Google Scholar 

  • Sanders, E. J., & Wride, M. A. (1995). Programmed cell death in development. International Review of Cytology, 163, 105–173.

    Google Scholar 

  • Saunders, J. W., Jr. (1966). Death in embryonic systems. Science, 154(3749), 604–612.

    Google Scholar 

  • Schlüter, G. (1973). Ultrastructural observations on cell necrosis during formation of the neural tube in mouse embryos. Zeitschrift für Anatomie und Entwicklungsgeschichte, 141(3), 251–264.

    Google Scholar 

  • Schoenwolf, G. C. (1979). Observations on closure of the neuropores in the chick embryo. The American Journal of Anatomy, 155(4), 445–465.

    Google Scholar 

  • Selçuki, M., Vatansever, S., Umur, A. S., Temiz, C., & Sayin, M. (2008). Apoptosis seems to be the major process while surface and neural ectodermal layers detach during neurulation. Childs Nervous System, 24(5), 577–580.

    Google Scholar 

  • Serbedzija, G. N., Dickinson, M., & McMahon, A. P. (1996). Cell death in the CNS of the Wnt-1 mutant mouse. Journal of Neurobiology, 31(3), 275–282.

    Google Scholar 

  • Smith, A., & Graham, A. (2001). Restricting Bmp-4 mediated apoptosis in hindbrain neural crest. Developmental Dynamics, 220(3), 276–283.

    Google Scholar 

  • Sulik, K. K., Cook, C. S., & Webster, W. S. (1988). Teratogens and craniofacial malformations: relationships to cell death. Development, 103(Suppl), 213–231.

    Google Scholar 

  • Süss, M., Washausen, S., Kuhn, H.-J., & Knabe, W. (2002). High resolution scanning and three-dimensional reconstruction of cellular events in large objects during brain development. Journal of Neuroscience Methods, 113(2), 147–158.

    Google Scholar 

  • Tait, S. W., & Green, D. R. (2008). Caspase-independent cell death: leaving the set without the final cut. Oncogene, 27(50), 6452–6461.

    Google Scholar 

  • Takahashi, K., Nuckolls, G. H., Tanaka, O., Semba, I., Takahashi, I., Dashner, R., et al. (1998). Adenovirus-mediated ectopic expression of Msx2 in even-numbered rhombomeres induces apoptotic elimination of cranial neural crest cells in ovo. Development, 125(9), 1627–1635.

    Google Scholar 

  • Tan, S. S., & Morriss-Kay, G. (1985). The development and distribution of the cranial neural crest in the rat embryo. Cell and Tissue Research, 240(2), 403–416.

    Google Scholar 

  • Trainor, P. A., Sobieszczuk, D., Wilkinson, D., & Krumlauf, R. (2002). Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development, 129(2), 433–442.

    Google Scholar 

  • van Straaten, H. W. M., Jaskoll, T., Rousseau, A. M. J., Terwindt-Rouwenhorst, E. A. W., Greenberg, G., Shankar, K., et al. (1993). Raphe of the posterior neural tube in the chick embryo: its closure and reopening as studied in living embryos with a high definition light microscope. Developmental Dynamics, 198(1), 65–76.

    Google Scholar 

  • Vogt, K. C. (1842). Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte (Alytes obstetricans). Solothurn: Jent & Gassmann.

    Google Scholar 

  • Washausen, S., & Knabe, W. (2017). Pax2/Pax8-defined subdomains and the occurrence of apoptosis in the posterior placodal area of mice. Brain Structure and Function, 222(6), 2671–2695.

    Google Scholar 

  • Weber, M., & Huisken, J. (2015). In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy. Swiss Medical Weekly, 145, w14227.

    Google Scholar 

  • Weil, M., Jacobson, M. D., & Raff, M. C. (1997). Is programmed cell death required for neural tube closure? Current Biology, 7(4), 281–284.

    Google Scholar 

  • Wellmann, J. (2010). Die Form des Werdens: Eine Kulturgeschichte der Embryologie 1760–1830. Göttingen: Wallstein.

    Google Scholar 

  • Whitehead, A. N. (1919). An enquiry concerning the principles of natural knowledge. London: Cambridge University Press.

    Google Scholar 

  • Wu, G. F., & Perlman, S. (1999). Macrophage infiltration, but not apoptosis, is correlated with immune-mediated demyelination following murine infection with a neurotropic coronavirus. Journal of Virology, 73(10), 8771–8780.

    Google Scholar 

  • Xu, Q., Mellitzer, G., Robinson, V., & Wilkinson, D. G. (1999). In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature, 399, 267–271.

    Google Scholar 

  • Yamaguchi, Y., Shinotsuka, N., Nonomura, K., Takemoto, K., Kuida, K., Yosida, H., et al. (2011). Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure. Journal of Cell Biology, 195(6), 1047–1060.

    Google Scholar 

Download references

Acknowledgments

The monoclonal anti-Pax3 antibody developed by Charles P. Ordahl was obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Knabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Washausen, S., Scheffel, T., Brunnett, G. et al. Possibilities and limitations of three-dimensional reconstruction and simulation techniques to identify patterns, rhythms and functions of apoptosis in the early developing neural tube. HPLS 40, 55 (2018). https://doi.org/10.1007/s40656-018-0222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40656-018-0222-1

Keywords