Skip to main content
Log in

Cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of over-expression of two cytosolic antioxidant enzymes (Cu, Zn-SOD and/or APX) on plant nutrition, gas exchange, chlorophyll fluorescence, seed viability and germination in transgenic tobacco (Nicotiana tabacum cv. Xanthi) under deficit irrigation or salinity conditions were investigated. Three transgenic lines of tobacco were used in this study: line 17, harboring 2 copies of the cytosolic CuZn-SOD (cytsod) gene; line 51, with 2 copies of the cytosolic APX (cytapx) gene and line 39, harboring one copy of each gene. Over-expression of cytosolic antioxidants enzymes in tobacco plants resulted in a better growth performance that correlated with an improved photosynthetic capacity and nutrient uptake. Moreover, cytsod or cytapx genes promoted seed germination, and enhanced tolerance to mild water stress. In addition, this enhanced antioxidant capacity protected seeds from ageing during prolonged storage, and stimulated germination under salt stress conditions. These results suggest that cytosolic antioxidant transgenes are useful tools to improve drought tolerance, nutrient uptake and seed germination under stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allen DJ, McKee IF, Farage PK, Baker NR (1997) Analysis of the limitation to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant Cell Environ 20:633–640

    Article  CAS  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:223–224

    Article  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Bailly C, Bogatek-Leszczynska R, Côme D, Corbineau F (2002) Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Sci Res 12:47–55

    Article  CAS  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biol 331:806–814

    Article  CAS  Google Scholar 

  • Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernández JA (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ 33:981–994

    Article  PubMed  CAS  Google Scholar 

  • Barba-Espin G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA (2011) Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ 34:1907–1919

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849

    Article  Google Scholar 

  • Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132

    Article  CAS  Google Scholar 

  • Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15:165–171

    Article  PubMed  CAS  Google Scholar 

  • Causin HF, Roqueiro G, Petrillo E, Láinez V, Pena LB, Marchetti CF, Gallego SM, Maldonado SB (2012) The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings. Plant Sci 183:197–205

    Article  PubMed  CAS  Google Scholar 

  • Darra BL, Seth SP, Singh H, Mendriatta RS (1973) Effect of hormone directed presoaking on emergence and growth of osmotically stressed wheat (Triticum sativum L) seeds. Agron J 65:292–295

    Article  CAS  Google Scholar 

  • De Gara L, de Pinto MC, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant 100:894–900

    Article  Google Scholar 

  • Diaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros Barceló A, Martínez-Gómez P, Hernández JA (2006) The apoplastic antioxidant system in Prunus: response to plum pox virus. J Exp Bot 57:3813–3824

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Vivancos P, Barba-Espín G, Hernández JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32:1491–1502

    Article  PubMed  CAS  Google Scholar 

  • Dickson R, Tomlinson P (1996) Oak growth, development and carbon metabolism in response to water stress. Ann For Sci 53:181–196

    Article  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153

    Article  CAS  Google Scholar 

  • Ethier GJ, Livingston NJ, Harrison DL, Black TA, Moran JA (2006) Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. Plant Cell Environ 29:168–2184

    Article  CAS  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  PubMed  CAS  Google Scholar 

  • Faize M, Burgos L, Faize L, Petri C, Barba-Espin G, Díaz-Vivancos P, Clemente-Moreno MJ, Alburquerque N, Hernandez JA (2012) Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase. Plant Pathol 61:858–866

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149:78–90

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471

    Article  Google Scholar 

  • Fridovich I (1975) Superoxide dismutases. Ann Rev. Biochem 44:147–149

    Article  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Heikal MM, Shaddad MA, Ahmed MM (1982) Effect of water stress and gibberellic acid on germination of flax, sesame and onion seeds. Biol Plant 24:124–129

    Article  CAS  Google Scholar 

  • Hendry GAF (1993) Oxygen, free radical processes and seed longevity. Seed Sci Res 3:141–153

    Article  CAS  Google Scholar 

  • Hernández JA, Corpas FJ, Gómez M, del Río LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110

    Article  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Ros-Barceló A, Sevilla F (2001) Antioxidant systems and O .−2 /H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea (Pisum sativum L.) leaves. Plant Physiol 114:275–284

    PubMed  PubMed Central  Google Scholar 

  • Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV (2010) Extracellular production of reactive oxygen species during seed germination and early growth in Pisum sativum. J Plant Physiol 167:805–811

    Article  PubMed  CAS  Google Scholar 

  • Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leymarie J, Vitkauskaite V, Hoang H, Gendreau E, Chazoule V, Meimoun F, Corbineau F, El-Maarouf-Bouteau H, Bailly C (2012) Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol 53:96–106

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1997) Mineral nutrient of higher plants, 2nd edn. London Academic Press Inc, London, pp 313–396

    Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  PubMed  CAS  Google Scholar 

  • Morohashi Y (2002) Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. J Exp Bot 53:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Narang RA, Bruene A, Altmann T (2000) Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Plant Physiol 124:1786–1799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317

    Article  PubMed  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parrish DJ, Leopold AC, Hanna MA (1982) Turgor changes with accelerated ageing of soybeans. Crop Sci 22:666–669

    Article  Google Scholar 

  • Perl-Treves R, Perl A (2002) Oxidative stress: an introduction. In: Inzé D, Van Montagu M (eds) Oxidative stress in plants. Taylor and Francis, London, pp 1–32

    Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004

    Article  PubMed  CAS  Google Scholar 

  • Priestley DA, Warner BG, Leopold AC, McBride MB (1985) Organic free radical levels in seeds and pollen: the effects of hydration and ageing. Physiol Plant 70:88–94

    Article  Google Scholar 

  • Puntarulo S, Galleano M, Sanchez RA, Boveris A (1991) Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochim Biophys Acta 1074:277–283

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarowar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK, Shin JS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci 169:55–63

    Article  CAS  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010) Over-expression of StAPX in tobacco improves seed germination and increase early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep 29:917–926

    Article  PubMed  CAS  Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 52:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Ungar IA (1978) Halophyte seed germination. Bot Rev 44:233–264

    Article  CAS  Google Scholar 

  • Zhou YH, Yu JQ, Huang LF, Nogués S (2004) The relationship between CO2 assimilation, photosynthetic electron transport and water–water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. Plant Cell Environ 27:1503–1514

    Article  Google Scholar 

Download references

Acknowledgments

PDV acknowledges the CSIC and the Spanish Ministry of Economy and Competitiveness for his ‘Ramon y Cajal’ research contract, co-financed by FEDER funds. This work was supported by the Spanish Ministry of Economy and Competitiveness (Project CICYT BFU2009-07443) co-financed by FEDER funds, and the Spanish Ministry of Economy and Competitiveness (Project INIA, RTA2013-00026-C03-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 8808 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faize, M., Nicolás, E., Faize, L. et al. Cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theor. Exp. Plant Physiol. 27, 215–226 (2015). https://doi.org/10.1007/s40626-015-0046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-015-0046-2

Keywords

Navigation