Skip to main content

Advertisement

Log in

Urinary exosomal circular RNAs of sex chromosome origin are associated with gender-related risk differences of clinicopathological features in patients with IgA nephropathy

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

There are arguments for individualized treatments and the necessity of non-invasive biomarkers for patients with IgA nephropathy (IgAN) according to gender, but the rationale remains unclear. We aimed to investigate the relationship between urine exosomal circular RNA (circRNA) levels, related genes, clinical features, and renal pathological features in IgA nephropathy patients of different genders.

Methods

Clinicopathological data from patients of different genders from a multicenter cohort were retrospectively analyzed. We used the Oxford classification to examine the severity of pathological damage in these patients. We compared clinical features and renal pathologies between IgAN patients of different genders. Using findings of urine exosomal circRNAs from male IgAN patients, we analyzed the relationship between this factor, the regulated genes located on the sex chromosomes, and renal pathologies.

Results

A total of 502 IgAN patients were included. The proportion of male patients with crescent formation was higher than that of females (p = 0.019). Multivariate logistic regression analysis showed that proteinuria was an independent marker for crescent formation in male and female patients with IgAN, while smoking and higher low-density lipoprotein cholesterol (LDL-C) levels were independent risk factors for crescent formation in males alone. Urine exosomal circRNA chrY:15478147-15481229- located on the Y chromosome in male patients was negatively correlated with the expressions of UTY in specific regions of the Y chromosome.

Conclusion

Compared with female patients, males with IgAN had more severe renal dysfunction and a higher probability of glomerular crescent formation. Urine exosomal circRNA chrY:15478147-15481229- might participate in the pathogenesis of IgAN in male patients by altering UTY expressions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Code availability

Not applicable.

References

  1. Rodrigues JC, Haas M, Reich HN (2017) IgA nephropathy. Clin J Am Soc Nephrol 12(4):677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lv J, Yang Y, Zhang H et al (2013) Prediction of outcomes in crescentic IgA nephropathy in a multicenter cohort study. J Am Soc Nephrol 24(12):2118–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Riispere Ž, Laurinavičius A, Kuudeberg A et al (2016) IgA nephropathy clinicopathologic study following the Oxford classification: progression peculiarities and gender-related differences. Medicina (Kaunas) 52(6):340–348

    Article  Google Scholar 

  4. Deng W, Tan X, Zhou Q et al (2018) Gender-related differences in clinicopathological characteristics and renal outcomes of Chinese patients with IgA nephropathy. BMC Nephrol 19(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Peters B, Stegmayr B, Andersson Y et al (2015) Increased risk of renal biopsy complications in patients with IgA-nephritis. Clin Exp Nephrol 19(6):1135–1141

    Article  CAS  PubMed  Google Scholar 

  6. Ma H, Xu Y, Zhang R et al (2019) Differential expression study of circular RNAs in exosomes from serum and urine in patients with idiopathic membranous nephropathy. Arch Med Sci 15(3):738–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Min QH, Chen XM, Zou YQ et al (2018) Differential expression of urinary exosomal microRNAs in IgA nephropathy. J Clin Lab Anal 32(2):e22226

    Article  CAS  Google Scholar 

  8. Solé C, Cortés-Hernández J, Felip ML et al (2015) miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dial Transplant 30(9):1488–1496

    Article  PubMed  CAS  Google Scholar 

  9. Feng Y, Lv LL, Wu WJ et al (2018) Urinary exosomes and exosomal CCL2 mRNA as biomarkers of active histologic injury in IgA nephropathy. Am J Pathol 188(11):2542–2552

    Article  CAS  PubMed  Google Scholar 

  10. Wilusz JE, Sharp PA (2013) Molecular biology. A circuitous route to noncoding RNA. Science 340(6131):440–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Z, Huang C, Bao C et al (2017) Corrigendum: exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 24(2):194

    Article  CAS  PubMed  Google Scholar 

  12. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luan R, Tian G, Ci X et al (2021) Differential expression analysis of urinary exosomal circular RNAs in patients with IgA nephropathy. Nephrology (Carlton) 26(5):432–441

    Article  CAS  Google Scholar 

  14. Cattran DC, Coppo R, Cook HT et al (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76(5):534–545

    Article  PubMed  Google Scholar 

  15. Trimarchi H, Barratt J, Cattran DC et al (2017) Oxford Classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group. Kidney Int 91(5):1014–1021

    Article  PubMed  Google Scholar 

  16. Wang LP, Peng XY, Lv XQ et al (2019) High throughput circRNAs sequencing profile of follicle fluid exosomes of polycystic ovary syndrome patients. J Cell Physiol 234:15537–15547

    Article  CAS  Google Scholar 

  17. Yang C, Wei Y, Yu L et al (2019) Identification of altered circular RNA expression in serum exosomes from patients with papillary thyroid carcinoma by high-throughput sequencing. Med Sci Monit 25:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaneko Y, Yoshita K, Kono E et al (2016) Extracapillary proliferation and arteriolar hyalinosis are associated with long-term kidney survival in IgA nephropathy. Clin Exp Nephrol 20(4):569–577

    Article  CAS  PubMed  Google Scholar 

  19. Radhakrishnan J, Cattran DC (2012) The KDIGO practice guideline on glomerulonephritis: reading between the (guide)lines–application to the individual patient. Kidney Int 82(8):840–856

    Article  PubMed  Google Scholar 

  20. Arany I, Taylor M, Fülöp T et al (2018) Adverse effects of chronic nicotine exposure on the kidney: potential human health implications of experimental findings. Int J Clin Pharmacol Ther 56(11):501–506

    Article  CAS  PubMed  Google Scholar 

  21. Su H, Chen S, He FF et al (2015) New insights into glomerular parietal epithelial cell activation and its signaling pathways in glomerular diseases. Biomed Res Int 2015:318935

    PubMed  PubMed Central  Google Scholar 

  22. Jain G, Jaimes EA (2013) Nicotine signaling and progression of chronic kidney disease in smokers. Biochem Pharmacol 86(8):1215–1223

    Article  CAS  PubMed  Google Scholar 

  23. Zheng CM, Lee YH, Chiu IJ et al (2020) Nicotine causes nephrotoxicity through the induction of NLRP6 inflammasome and Alpha7 nicotinic acetylcholine receptor. Toxics 8(4):92

    Article  CAS  PubMed Central  Google Scholar 

  24. Xu D, You X, Wang Z et al (2015) Chinese systemic lupus erythematosus treatment and research group registry VI: effect of cigarette smoking on the clinical phenotype of Chinese patients with systemic lupus erythematosus. PLoS ONE 10(8):e0134451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jaimes EA, Zhou MS, Siddiqui M et al (2021) Nicotine, smoking, podocytes, and diabetic nephropathy. Am J Physiol Renal Physiol 320(3):F442-f453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao D, Ma L, Liu J et al (2019) Cigarette smoking as a risk factor for diabetic nephropathy: a systematic review and meta-analysis of prospective cohort studies. PLoS ONE 14(2):e0210213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Z, Yao Y, Han W et al (2015) Smoking prevalence and associated factors as well as attitudes and perceptions towards tobacco control in Northeast China. Int J Environ Res Public Health 12(7):8606–8618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arany I, Hall S, Reed DK et al (2016) Nicotine enhances high-fat diet-induced oxidative stress in the kidney. Nicotine Tob Res 18(7):1628–1634

    Article  CAS  PubMed  Google Scholar 

  29. Busuioc RM, Covic A, Kanbay M et al (2020) Protein convertase subtilisin/kexin type 9 biology in nephrotic syndrome: implications for use as therapy. Nephrol Dial Transplant 35(10):1663–1674

    Article  CAS  PubMed  Google Scholar 

  30. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  31. Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32(5):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sallustio F, Serino G, Cox SN et al (2016) Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clin Sci (Lond) 130(9):733–746

    Article  CAS  Google Scholar 

  33. Walport LJ, Hopkinson RJ, Vollmar M et al (2014) Human UTY(KDM6C) is a male-specific Nϵ-methyl lysyl demethylase. J Biol Chem 289(26):18302–18313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vendomèle J, Dehmani S, Khebizi Q et al (2018) Subretinal injection of HY peptides induces systemic antigen-specific inhibition of effector CD4(+) and CD8(+) T-cell responses. Front Immunol 9:504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bai L, Li H, Li J et al (2019) Immunosuppressive effect of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via regulating the differentiation of CD4+ T cell subsets in rats. Int Immunopharmacol 70:313–323

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Shilatifard A (2019) UTX mutations in human cancer. Cancer Cell 35(2):168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gažová I, Lengeling A, Summers KM (2019) Lysine demethylases KDM6A and UTY: The X and Y of histone demethylation. Mol Genet Metab 127(1):31–44

    Article  PubMed  CAS  Google Scholar 

  38. Kobatake K, Ikeda KI, Nakata Y et al (2020) Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunction. Clin Cancer Res 26(8):2065–2079

    Article  CAS  PubMed  Google Scholar 

  39. Makita Y, Suzuki H, Kano T et al (2020) TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int 97(2):340–349

    Article  CAS  PubMed  Google Scholar 

  40. Andricovich J, Perkail S, Kai Y et al (2018) Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 33(3):512-526.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tricarico R, Nicolas E, Hall MJ et al (2020) X- and Y-linked chromatin-modifying genes as regulators of sex-specific cancer incidence and prognosis. Clin Cancer Res 26(21):5567–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Molina-Serrano D, Kyriakou D, Kirmizis A (2019) Histone modifications as an intersection between diet and longevity. Front Genet 10:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Hygiene and Health Technology Innovation Project of Health Commission of Jilin Province (No. 2020J037).

Author information

Authors and Affiliations

Authors

Contributions

LRM and TG carried out the experiment and wrote the paper. ZH analyzed the clinical data. SXL and ZR collected the clinical data. LJC collected urine samples. LXH conceived the research idea and analyzed the experimental data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuehong Lu.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

The current study was approved by the Ethics Committee of the Second Hospital of Jilin University (No.2020001) and adhered to the Helsinki Declaration guidelines.

Consent to participate

Informed consent was obtained from participants.

Consent for publication

Consent was obtained from participants regarding the publishing of their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, R., Tian, G., Zhang, H. et al. Urinary exosomal circular RNAs of sex chromosome origin are associated with gender-related risk differences of clinicopathological features in patients with IgA nephropathy. J Nephrol 35, 1069–1078 (2022). https://doi.org/10.1007/s40620-021-01118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-021-01118-7

Keywords

Navigation