Skip to main content

Advertisement

Log in

The study of single cells in diabetic kidney disease

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

In the past few years there has been a rapid expansion of interest in the study of single cells, especially through the new techniques that involve single-cell RNA sequencing (scRNA-seq). Recently, these techniques have provided new insights into kidney health and disease, including insights into diabetic kidney disease (DKD). However, despite the interest and the technological advances, the study of individual cells in DKD is not a new concept. Many clinicians and researchers who work within the DKD space may be familiar with experimental techniques that actually involve the study of individual cells, but may be unfamiliar with newer scRNA-seq technology. Here, with the goal of improving accessibility to the single-cell field, we provide a primer on single-cell studies with a focus on DKD. We situate the technology in its historical context and provide a brief explanation of the common aspects of the different technologies available. Then we review some of the most important recent studies of kidney (patho)biology that have taken advantage of scRNA-seq techniques, before emphasizing the new insights into the molecular pathogenesis of DKD gleaned with these techniques. Finally, we highlight common pitfalls and limitations of scRNA-seq methods and we look toward the future to how single-cell experiments may be incorporated into the study of DKD and how to interpret the findings of these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Umanath K, Lewis JB (2018) Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 71(6):884–895. https://doi.org/10.1053/j.ajkd.2017.10.026

    Article  PubMed  Google Scholar 

  2. Loo JF, Ho HP, Kong SK, Wang TH, Ho YP (2019) Technological advances in multiscale analysis of single cells in biomedicine. Adv Biosyst 3(11):e1900138. https://doi.org/10.1002/adbi.201900138

    Article  PubMed  Google Scholar 

  3. Gundersen HJ, Seefeldt T, Osterby R (1980) Glomerular epithelial foot processes in normal man and rats. Distribution of true width and its intra- and inter-individual variation. Cell Tissue Res 205(1):147–155. https://doi.org/10.1007/BF00234450

    Article  PubMed  CAS  Google Scholar 

  4. Osterby R, Gundersen HJ, Horlyck A, Kroustrup JP, Nyberg G, Westberg G (1983) Diabetic glomerulopathy. Structural characteristics of the early and advanced stages. Diabetes 32(Suppl 2):79–82. https://doi.org/10.2337/diab.32.2.s79

    Article  PubMed  Google Scholar 

  5. White KE, Bilous RW, Marshall SM, El Nahas M, Remuzzi G, Piras G, De Cosmo S, Viberti G (2002) Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes 51(10):3083–3089

    Article  CAS  PubMed  Google Scholar 

  6. Iwano M, Kubo A, Nishino T, Sato H, Nishioka H, Akai Y, Kurioka H, Fujii Y, Kanauchi M, Shiiki H, Dohi K (1996) Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus. Kidney Int 49(4):1120–1126

    Article  CAS  PubMed  Google Scholar 

  7. Beltrami C, Simpson K, Jesky M, Wonnacott A, Carrington C, Holmans P, Newbury L, Jenkins R, Ashdown T, Dayan C, Satchell S, Corish P, Cockwell P, Fraser D, Bowen T (2018) Association of elevated urinary miR-126, miR-155, and miR-29b with diabetic kidney disease. Am J Pathol 188(9):1982–1992. https://doi.org/10.1016/j.ajpath.2018.06.006

    Article  PubMed  CAS  Google Scholar 

  8. Baelde HJ, Eikmans M, Lappin DW, Doran PP, Hohenadel D, Brinkkoetter PT, van der Woude FJ, Waldherr R, Rabelink TJ, de Heer E, Bruijn JA (2007) Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with podocyte loss. Kidney Int 71(7):637–645

    Article  CAS  PubMed  Google Scholar 

  9. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470. https://doi.org/10.1126/science.270.5235.467

    Article  PubMed  CAS  Google Scholar 

  10. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349. https://doi.org/10.1126/science.1158441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hodgin JB, Nair V, Zhang H, Randolph A, Harris RC, Nelson RG, Weil EJ, Cavalcoli JD, Patel JM, Brosius FC 3rd, Kretzler M (2013) Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62(1):299–308. https://doi.org/10.2337/db11-1667

    Article  PubMed  CAS  Google Scholar 

  12. Berthier CC, Zhang H, Schin M, Henger A, Nelson RG, Yee B, Boucherot A, Neusser MA, Cohen CD, Carter-Su C, Argetsinger LS, Rastaldi MP, Brosius FC, Kretzler M (2009) Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58(2):469–477. https://doi.org/10.2337/db08-1328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tuttle KR, Brosius FC 3rd, Adler SG, Kretzler M, Mehta RL, Tumlin JA, Tanaka Y, Haneda M, Liu J, Silk ME, Cardillo TE, Duffin KL, Haas JV, Macias WL, Nunes FP, Janes JM (2018) JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transpl 33(11):1950–1959. https://doi.org/10.1093/ndt/gfx377

    Article  CAS  Google Scholar 

  14. Lionnet T, Singer RH (2012) Transcription goes digital. EMBO Rep 13(4):313–321. https://doi.org/10.1038/embor.2012.31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kaur H, Carvalho J, Looso M, Singh P, Chennupati R, Preussner J, Gunther S, Albarran-Juarez J, Tischner D, Classen S, Offermanns S, Wettschureck N (2017) Single-cell profiling reveals heterogeneity and functional patterning of GPCR expression in the vascular system. Nat Commun 8:15700. https://doi.org/10.1038/ncomms15700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630. https://doi.org/10.1038/nrg3542

    Article  PubMed  CAS  Google Scholar 

  17. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382. https://doi.org/10.1038/nmeth.1315

    Article  PubMed  CAS  Google Scholar 

  18. Wu H, Humphreys BD (2017) The promise of single-cell RNA sequencing for kidney disease investigation. Kidney Int 92(6):1334–1342. https://doi.org/10.1016/j.kint.2017.06.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Shearstone JR, Allaire NE, Campos-Rivera J, Rao S, Perrin S (2006) Accurate and precise transcriptional profiles from 50 pg of total RNA or 100 flow-sorted primary lymphocytes. Genomics 88(1):111–121. https://doi.org/10.1016/j.ygeno.2006.03.004

    Article  PubMed  CAS  Google Scholar 

  20. Matuła K, Rivello F, Huck WTS (2020) Single-cell analysis using droplet microfluidics. Adv Biosyst 4(1):e1900188. https://doi.org/10.1002/adbi.201900188

    Article  PubMed  Google Scholar 

  21. Ye Y, Song H, Zhang J, Shi S (2018) Understanding the biology and pathogenesis of the kidney by single-cell transcriptomic analysis. Kidney Dis (Basel, Switzerland) 4(4):214–225. https://doi.org/10.1159/000492470

    Article  Google Scholar 

  22. Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS (2014) Single cell dissection of early kidney development: multilineage priming. Development 141(15):3093–3101. https://doi.org/10.1242/dev.110601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810. https://doi.org/10.1016/j.cell.2015.10.039

    Article  PubMed  CAS  Google Scholar 

  24. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58(4):610–620. https://doi.org/10.1016/j.molcel.2015.04.005

    Article  PubMed  CAS  Google Scholar 

  25. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L (2017) Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12(1):44–73. https://doi.org/10.1038/nprot.2016.154

    Article  PubMed  CAS  Google Scholar 

  27. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Matula K, Rivello F, Huck WTS (2020) Single-cell analysis using droplet microfluidics. Adv Biosyst 4(1):e1900188. https://doi.org/10.1002/adbi.201900188

    Article  PubMed  Google Scholar 

  29. Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, Welling PA, Waikar SS, Humphreys BD (2019) The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A 116(39):19619–19625. https://doi.org/10.1073/pnas.1908706116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lacar B, Linker SB, Jaeger BN, Krishnaswami SR, Barron JJ, Kelder MJE, Parylak SL, Paquola ACM, Venepally P, Novotny M, O’Connor C, Fitzpatrick C, Erwin JA, Hsu JY, Husband D, McConnell MJ, Lasken R, Gage FH (2016) Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun 7:11022. https://doi.org/10.1038/ncomms11022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Park J, Liu CL, Kim J, Susztak K (2019) Understanding the kidney one cell at a time. Kidney Int 96(4):862–870. https://doi.org/10.1016/j.kint.2019.03.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Huang S, Sheng X, Susztak K (2019) The kidney transcriptome, from single cells to whole organs and back. Curr Opin Nephrol Hypertens 28(3):219–226. https://doi.org/10.1097/MNH.0000000000000495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fu J, Akat KM, Sun Z, Zhang W, Schlondorff D, Liu Z, Tuschl T, Lee K, He JC (2019) Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol 30(4):533–545. https://doi.org/10.1681/ASN.2018090896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chung JJ, Goldstein L, Chen YJ, Lee J, Webster JD, Roose-Girma M, Paudyal SC, Modrusan Z, Dey A, Shaw AS (2020) Single-cell transcriptome profiling of the kidney glomerulus identifies key cell types and reactions to injury. J Am Soc Nephrol 31(10):2341–2354. https://doi.org/10.1681/asn.2020020220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Magella B, Adam M, Potter AS, Venkatasubramanian M, Chetal K, Hay SB, Salomonis N, Potter SS (2018) Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf. Dev Biol 434(1):36–47. https://doi.org/10.1016/j.ydbio.2017.11.006

    Article  PubMed  CAS  Google Scholar 

  36. Munsky B, Neuert G, van Oudenaarden A (2012) Using gene expression noise to understand gene regulation. Science 336(6078):183–187. https://doi.org/10.1126/science.1216379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vera M, Biswas J, Senecal A, Singer RH, Park HY (2016) Single-cell and single-molecule analysis of gene expression regulation. Annu Rev Genet 50:267–291. https://doi.org/10.1146/annurev-genet-120215-034854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lu Y, Ye Y, Yang Q, Shi S (2017) Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes. Kidney Int 92(2):504–513. https://doi.org/10.1016/j.kint.2017.01.016

    Article  PubMed  CAS  Google Scholar 

  39. Lu Y, Ye Y, Bao W, Yang Q, Wang J, Liu Z, Shi S (2017) Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing. Kidney Int 92(5):1119–1129. https://doi.org/10.1016/j.kint.2017.04.022

    Article  PubMed  CAS  Google Scholar 

  40. Takemoto M, Asker N, Gerhardt H, Lundkvist A, Johansson BR, Saito Y, Betsholtz C (2002) A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol 161(3):799–805. https://doi.org/10.1016/S0002-9440(10)64239-3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Conway BR, O’Sullivan ED, Cairns C, O’Sullivan J, Simpson DJ, Salzano A, Connor K, Ding P, Humphries D, Stewart K, Teenan O, Pius R, Henderson NC, Benezech C, Ramachandran P, Ferenbach D, Hughes J, Chandra T, Denby L (2020) Kidney single-cell atlas reveals myeloid heterogeneity in progression and regression of kidney disease. J Am Soc Nephrol 31(12):2833–2854. https://doi.org/10.1681/ASN.2020060806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098. https://doi.org/10.1038/nmeth.2639

    Article  PubMed  CAS  Google Scholar 

  43. Zimmerman KA, Bentley MR, Lever JM, Li Z, Crossman DK, Song CJ, Liu S, Crowley MR, George JF, Mrug M, Yoder BK (2019) Single-cell RNA sequencing identifies candidate renal resident macrophage gene expression signatures across species. J Am Soc Nephrol 30(5):767–781. https://doi.org/10.1681/asn.2018090931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Susztak K (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360(6390):758–763. https://doi.org/10.1126/science.aar2131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liao J, Yu Z, Chen Y, Bao M, Zou C, Zhang H, Liu D, Li T, Zhang Q, Li J, Cheng J, Mo Z (2020) Single-cell RNA sequencing of human kidney. Sci Data 7(1):4. https://doi.org/10.1038/s41597-019-0351-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Karaiskos N, Rahmatollahi M, Boltengagen A, Liu H, Hoehne M, Rinschen M, Schermer B, Benzing T, Rajewsky N, Kocks C, Kann M, Müller RU (2018) A single-cell transcriptome atlas of the mouse glomerulus. J Am Soc Nephrol 29(8):2060–2068. https://doi.org/10.1681/asn.2018030238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chen L, Lee JW, Chou CL, Nair AV, Battistone MA, Păunescu TG, Merkulova M, Breton S, Verlander JW, Wall SM, Brown D, Burg MB, Knepper MA (2017) Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proc Natl Acad Sci U S A 114(46):E9989-e9998. https://doi.org/10.1073/pnas.1710964114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lake BB, Chen S, Hoshi M, Plongthongkum N, Salamon D, Knoten A, Vijayan A, Venkatesh R, Kim EH, Gao D, Gaut J, Zhang K, Jain S (2019) A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat Commun 10(1):2832. https://doi.org/10.1038/s41467-019-10861-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tang Q, Iyer S, Lobbardi R, Moore JC, Chen H, Lareau C, Hebert C, Shaw ML, Neftel C, Suva ML, Ceol CJ, Bernards A, Aryee M, Pinello L, Drummond IA, Langenau DM (2017) Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. J Exp Med 214(10):2875–2887. https://doi.org/10.1084/jem.20170976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Young MD, Mitchell TJ, Vieira Braga FA, Tran MGB, Stewart BJ, Ferdinand JR, Collord G, Botting RA, Popescu DM, Loudon KW, Vento-Tormo R, Stephenson E, Cagan A, Farndon SJ, Del Castillo V-H, Guzzo C, Richoz N, Mamanova L, Aho T, Armitage JN, Riddick ACP, Mushtaq I, Farrell S, Rampling D, Nicholson J, Filby A, Burge J, Lisgo S, Maxwell PH, Lindsay S, Warren AY, Stewart GD, Sebire N, Coleman N, Haniffa M, Teichmann SA, Clatworthy M, Behjati S (2018) Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361(6402):594–599. https://doi.org/10.1126/science.aat1699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wu H, Malone AF, Donnelly EL, Kirita Y, Uchimura K, Ramakrishnan SM, Gaut JP, Humphreys BD (2018) Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J Am Soc Nephrol 29(8):2069–2080. https://doi.org/10.1681/ASN.2018020125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Der E, Ranabothu S, Suryawanshi H, Akat KM, Clancy R, Morozov P, Kustagi M, Czuppa M, Izmirly P, Belmont HM, Wang T, Jordan N, Bornkamp N, Nwaukoni J, Martinez J, Goilav B, Buyon JP, Tuschl T, Putterman C (2017) Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight. https://doi.org/10.1172/jci.insight.93009

    Article  PubMed  PubMed Central  Google Scholar 

  53. Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, Hoover PJ, Chicoine A, Eisenhaure TM, Jonsson AH, Li S, Lieb DJ, Zhang F, Slowikowski K, Browne EP, Noma A, Sutherby D, Steelman S, Smilek DE, Tosta P, Apruzzese W, Massarotti E, Dall’Era M, Park M, Kamen DL, Furie RA, Payan-Schober F, Pendergraft WF 3rd, McInnis EA, Buyon JP, Petri MA, Putterman C, Kalunian KC, Woodle ES, Lederer JA, Hildeman DA, Nusbaum C, Raychaudhuri S, Kretzler M, Anolik JH, Brenner MB, Wofsy D, Hacohen N, Diamond B, Accelerating Medicines Partnership in SLE network (2019) The immune cell landscape in kidneys of patients with lupus nephritis. Nat Immunol 20(7):902–914. https://doi.org/10.1038/s41590-019-0398-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kirita Y, Wu H, Uchimura K, Wilson PC, Humphreys BD (2020) Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc Natl Acad Sci U S A 117(27):15874–15883. https://doi.org/10.1073/pnas.2005477117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yuen DA, Stead BE, Zhang Y, White KE, Kabir MG, Thai K, Advani SL, Connelly KA, Takano T, Zhu L, Cox AJ, Kelly DJ, Gibson IW, Takahashi T, Harris RC, Advani A (2012) eNOS deficiency predisposes podocytes to injury in diabetes. J Am Soc Nephrol 23(11):1810–1823. https://doi.org/10.1681/ASN.2011121170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Malone AF, Wu H, Humphreys BD (2018) Bringing renal biopsy interpretation into the molecular age with single-cell RNA sequencing. Semin Nephrol 38(1):31–39. https://doi.org/10.1016/j.semnephrol.2017.09.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13(10):629–646. https://doi.org/10.1038/nrneph.2017.107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Picelli S (2017) Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 14(5):637–650. https://doi.org/10.1080/15476286.2016.1201618

    Article  PubMed  Google Scholar 

  59. Wilson PC, Humphreys BD (2020) Kidney and organoid single-cell transcriptomics: the end of the beginning. Pediatr Nephrol 35(2):191–197. https://doi.org/10.1007/s00467-018-4177-y

    Article  PubMed  Google Scholar 

  60. Kato M, Natarajan R (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 15(6):327–345. https://doi.org/10.1038/s41581-019-0135-6

    Article  PubMed  PubMed Central  Google Scholar 

  61. Majumder S, Thieme K, Batchu SN, Alghamdi TA, Bowskill BB, Kabir MG, Liu Y, Advani SL, White KE, Geldenhuys L, Tennankore KK, Poyah P, Siddiqi FS, Advani A (2018) Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J Clin Investig 128(1):483–499. https://doi.org/10.1172/JCI95946

    Article  PubMed  Google Scholar 

  62. Luo C, Rivkin A, Zhou J, Sandoval JP, Kurihara L, Lucero J, Castanon R, Nery JR, Pinto-Duarte A, Bui B, Fitzpatrick C, O’Connor C, Ruga S, Van Eden ME, Davis DA, Mash DC, Behrens MM, Ecker JR (2018) Robust single-cell DNA methylome profiling with snmC-seq2. Nat Commun 9(1):3824. https://doi.org/10.1038/s41467-018-06355-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23(12):2126–2135. https://doi.org/10.1101/gr.161679.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1172. https://doi.org/10.1038/nbt.3383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ai S, Xiong H, Li CC, Luo Y, Shi Q, Liu Y, Yu X, Li C, He A (2019) Profiling chromatin states using single-cell itChIP-seq. Nat Cell Biol 21(9):1164–1172. https://doi.org/10.1038/s41556-019-0383-5

    Article  PubMed  CAS  Google Scholar 

  66. Behjati S, Haniffa M (2017) Genetics: taking single-cell transcriptomics to the bedside. Nat Rev Clin Oncol 14(10):590–592. https://doi.org/10.1038/nrclinonc.2017.117

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Figures were created with BioRender.com.

Funding

This article was supported, in part, with funds from a Banting and Best Diabetes Centre Sun Life Financial Pilot and Feasibility grant to A.A.. H.K. is a recipient of a KRESCENT Post-doctoral Fellowship from the Kidney Foundation of Canada. A.A. is a recipient of a Diabetes Investigator Award from Diabetes Canada and holds the Keenan Chair in Medicine at St. Michael’s Hospital and University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

H.K. and A.A. researched and wrote the article.

Corresponding author

Correspondence to Andrew Advani.

Ethics declarations

Conflict of interest

A.A. has received research support through his institution from Boehringer Ingelheim.

Ethical approval

Not applicable.

Informed consent

For this type of study, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Advani, A. The study of single cells in diabetic kidney disease. J Nephrol 34, 1925–1939 (2021). https://doi.org/10.1007/s40620-020-00964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00964-1

Keywords