Abstract
Acute kidney injury (AKI) as a result of ischaemia–reperfusion represents a major healthcare burden worldwide. Mortality rates from AKI in hospitalized patients are extremely high and have changed little despite decades of research and medical advances. In 1986, Murry et al. demonstrated for the first time the phenomenon of ischaemic preconditioning to protect against ischaemia–reperfusion injury (IRI). This seminal finding paved the way for a broad body of research, which attempted to understand and ultimately harness this phenomenon for human application. The ability of preconditioning to limit renal IRI has now been demonstrated in multiple different animal models. However, more than 30 years later, a safe and consistent method of protecting human organs, including the kidneys, against IRI is still not available. This review highlights agents which, despite strong preclinical data, have recently failed to reduce AKI in human trials. The multiple reasons which may have contributed to the failure to translate some of the promising findings to clinical therapies are discussed. Agents which hold promise in the clinic because of their recent efficacy in preclinical large animal models are also reviewed.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- IRI:
-
Ischaemia-reperfusion injury;
- HIF:
-
Hypoxia inducible factor
- IC:
-
Intermittent clamping
- AKI:
-
Acute kidney injury
References
Allen DG, Xiao XH (2003) Role of the cardiac Na+/H+ exchanger during ischemia and reperfusion. Cardiovasc Res 57:934–941
Alshaikh HN et al (2018) Financial impact of acute kidney injury after cardiac operations in the United States. Ann Thorac Surg 105:469–475. https://doi.org/10.1016/j.athoracsur.2017.10.053
Amdisen C et al (2016) Testing danegaptide effects on kidney function after ischemia/reperfusion injury in a new porcine two week model. PLoS One 11:e0164109. https://doi.org/10.1371/journal.pone.0164109
Athanasiadis D et al (2015) Remote ischemic preconditioning may attenuate renal ischemia-reperfusion injury in a porcine model of supraceliac aortic cross-clamping. J Vasc Res 52:161–171. https://doi.org/10.1159/000439219
Aufhauser DD Jr et al (2016) Improved renal ischemia tolerance in females influences kidney transplantation outcomes. J Clin Investig 126:1968–1977. https://doi.org/10.1172/JCI84712
Baker M (2016) 1500 scientists lift the lid on reproducibility. Nature 533:452–454. https://doi.org/10.1038/533452a
Bank JR et al (2018) Urinary TIMP-2 predicts the presence and duration of delayed graft function in donation after circulatory death kidney transplant recipients. Transplantation. https://doi.org/10.1097/TP.0000000000002472
Barrera-Chimal J et al (2018) The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling. Kidney Int 93:1344–1355. https://doi.org/10.1016/j.kint.2017.12.016
Becker GJ, Hewitson TD (2013) Animal models of chronic kidney disease: useful but not perfect. Nephrol Dial Transplant 28:2432–2438. https://doi.org/10.1093/ndt/gft071
Bedir S, Ma Y, Antonelli J, Cadeddu JA, Gahan JC (2015) Ineffectiveness of remote ischemic renal preconditioning in a porcine solitary-kidney model. J Endourol 29:590–594. https://doi.org/10.5812/ircmj.15605
Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483:531–533. https://doi.org/10.1038/483531a
Billings FT, Shaw AD (2014) Clinical trial endpoints in acute kidney injury. Nephron Clin Pract 127:89–93. https://doi.org/10.1159/000363725
Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA, Ischemia NWGotToTfPtHf (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134. https://doi.org/10.1161/01.RES.0000137171.97172.d7
Castellano G et al (2018) Complement activation during ischemia/reperfusion injury induces pericyte-to-myofibroblast transdifferentiation regulating peritubular capillary lumen reduction through pERK. Signal Front Immunol 9:1002. https://doi.org/10.3389/fimmu.2018.01002
Chang YC et al (2016) Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood) 241:1588–1602. https://doi.org/10.1177/1535370216642528
Chatterjee PK (2007) Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn-Schmiedebergs Arch Pharmacol 376:1–43. https://doi.org/10.1007/s00210-007-0183-5
Cragg L, Hebbel RP, Miller W, Solovey A, Selby S, Enright H (1998) The iron chelator L1 potentiates oxidative DNA damage in iron-loaded liver cells. Blood 92:632–638
Damasceno-Ferreira JA, Abreu LAS, Bechara GR, Costa WS, Pereira-Sampaio MA, Sampaio FJB, De Souza DB (2018) Mannitol reduces nephron loss after warm renal ischemia in a porcine model. BMC Urol 18:16. https://doi.org/10.1186/s12894-018-0328-5
de Caestecker M et al (2015) Bridging translation by improving preclinical study design in AKI. J Am Soc Nephrol 26:2905–2916. https://doi.org/10.1681/ASN.2015070832
Duke GJ (1999) Renal protective agents: a review. Crit Care Resusc 1:265–275
Fan W, Ankawi G, Zhang J, Digvijay K, Giavarina D, Yin Y, Ronco C (2018) Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin Chem Lab Med. https://doi.org/10.1515/cclm-2018-0776
Fanelli D (2018) Opinion: is science really facing a reproducibility crisis, and do we need it to? Proc Natl Acad Sci USA 115:2628–2631. https://doi.org/10.1073/pnas.1708272114
Fiorentino M, Castellano G, Kellum JA (2017) Differences in acute kidney injury ascertainment for clinical and preclinical studies. Nephrol Dial Transplant 32:1789–1805. https://doi.org/10.1093/ndt/gfx002
Gallagher KM, O’Neill S, Harrison EM, Ross JA, Wigmore SJ, Hughes J (2017) Recent early clinical drug development for acute kidney injury. Expert Opin Investig Drugs 26:141–154. https://doi.org/10.1080/13543784.2017.1274730
Gocze I et al (2015) Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery. PLoS One 10:e0120863. https://doi.org/10.1371/journal.pone.0120863
Hausenloy DJ et al (2010) Translating novel strategies for cardioprotection: the Hatter workshop recommendations. Basic Res Cardiol 105:677–686. https://doi.org/10.1007/s00395-010-0121-4
Henry TD et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365
Hernandez DJ et al (2008) Can ischemic preconditioning ameliorate renal ischemia-reperfusion injury in a single-kidney porcine model? J Endourol 22:2531–2536. https://doi.org/10.1089/end.2008.0145
Higgins DF et al (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Investig 117:3810–3820. https://doi.org/10.1172/JCI30487
Himmelfarb J et al (2018) Perioperative THR-184 and AKI after cardiac surgery. J Am Soc Nephrol 29:670–679. https://doi.org/10.1681/ASN.2017020217
Ikeda Y et al (2014) Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PLoS One 9:e89355. https://doi.org/10.1371/journal.pone.0089355
Investigators ACT (2011) Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized acetylcysteine for contrast-induced nephropathy trial (ACT). Circulation 124:1250–1259. https://doi.org/10.1161/CIRCULATIONAHA.111.038943
Ito K, Nakashima J, Hanawa Y, Oya M, Ohigashi T, Marumo K, Murai M (2004) The prediction of renal function 6 years after unilateral nephrectomy using preoperative risk factors. J Urol 171:120–125
Jones SP et al (2015) The NHLBI-sponsored Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ Res 116:572–586. https://doi.org/10.1161/CIRCRESAHA.116.305462
Kaballo MA, Elsayed ME, Stack AG (2017) Linking acute kidney injury to chronic kidney disease: the missing links. J Nephrol 30:461–475. https://doi.org/10.1007/s40620-016-0359-5
Kalantarinia K (2009) Novel imaging techniques in acute kidney injury. Curr Drug Targets 10:1184–1189
Kalinowski DS, Richardson DR (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57:547–583. https://doi.org/10.1124/pr.57.4.2
Karajala V, Mansour W, Kellum JA (2009) Diuretics in acute kidney injury. Minerva Anestesiol 75:251–257
Kelpke SS et al (2012) Sodium nitrite protects against kidney injury induced by brain death and improves post-transplant function. Kidney Int 82:304–313. https://doi.org/10.1038/ki.2012.116
Labossiere JR, Pelletier JS, Thiesen A, Schulz R, Bigam DL, Cheung PY (2015) Doxycycline attenuates renal injury in a swine model of neonatal hypoxia-reoxygenation. Shock 43:99–105. https://doi.org/10.1097/SHK.0000000000000257
Lane BR, Babineau DC, Poggio ED, Weight CJ, Larson BT, Gill IS, Novick AC (2008) Factors predicting renal functional outcome after partial nephrectomy. J Urol 180:2363–2368. https://doi.org/10.1016/j.juro.2008.08.036 discussion 2368–2369
Leaf DE, Waikar SS (2017) End points for clinical trials in acute kidney injury. Am J Kidney Dis 69:108–116. https://doi.org/10.1053/j.ajkd.2016.05.033
Lefer D et al (2014) Sodium nitrite fails to limit myocardial infarct size: results from the CAESAR Cardioprotection Consortium (LB645). FASEB J 28:LB645
Li B et al (2017) Effect of remote ischemic preconditioning on postoperative acute kidney injury among patients undergoing cardiac and vascular interventions: a meta-analysis. J Nephrol 30:19–33. https://doi.org/10.1007/s40620-016-0301-x
Li D, Bai T, Brorson JR (2011) Adaptation to moderate hypoxia protects cortical neurons against ischemia–reperfusion injury and excitotoxicity independently of HIF-1alpha. Exp Neurol 230:302–310
Li ZL et al (2018) HIF-1alpha inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int. https://doi.org/10.1016/j.kint.2018.09.013
Melin J, Hellberg O, Fellstrom B (2003) Hyperglycaemia and renal ischaemia–reperfusion injury. Nephrol Dial Transplant 18:460–462
Melis N et al (2017) Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome. J Am Soc Nephrol 28:811–822. https://doi.org/10.1681/ASN.2016010012
Meyer M, LeWinter MM, Bell SP, Chen Z, Selby DE, Singla DK, Dauerman HL (2009) N-Acetylcysteine-enhanced contrast provides cardiorenal protection. JACC Cardiovasc Interv 2:215–221. https://doi.org/10.1016/j.jcin.2008.11.011
Michels C, Dorai T, Chander P, Choudhury M, Grasso M (2009) Hypoxic pre-conditioning in a rat renal ischemia model: an evaluation of the use of hydralazine. World J Urol 27:817–823. https://doi.org/10.1007/s00345-009-0415-z
Mizuma A, Yenari MA (2017) Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol 8:467. https://doi.org/10.3389/fneur.2017.00467
Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136
Nigwekar SU, Kandula P (2009) N-Acetylcysteine in cardiovascular-surgery-associated renal failure: a meta-analysis. Ann Thorac Surg 87:139–147. https://doi.org/10.1016/j.athoracsur.2008.09.026
O’Kane D et al (2018) Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model. Biometals 31:821–834. https://doi.org/10.1007/s10534-018-0125-3
Paller MS, Hedlund BE (1988) Role of iron in postischemic renal injury in the rat. Kidney Int 34:474–480
Pistolesi V, Regolisti G, Morabito S, Gandolfini I, Corrado S, Piotti G, Fiaccadori E (2018) Contrast medium induced acute kidney injury: a narrative review. J Nephrol 31:797–812. https://doi.org/10.1007/s40620-018-0498-y
Rao K et al (2017) Protective effect of zinc preconditioning against renal ischemia reperfusion injury is dose dependent. PLoS One 12:e0180028. https://doi.org/10.1371/journal.pone.0180028
Robert R, Vinet M, Jamet A, Coudroy R (2017) Effect of non-invasive remote ischemic preconditioning on intra-renal perfusion in volunteers. J Nephrol 30:393–395. https://doi.org/10.1007/s40620-016-0318-1
Rosner MH, Okusa MD (2006) Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol 1:19–32. https://doi.org/10.2215/CJN.00240605
Sekijima M et al (2017) Hydrogen sulfide prevents renal ischemia–reperfusion injury in CLAWN miniature swine. J Surg Res 219:165–172. https://doi.org/10.1016/j.jss.2017.05.123
Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408. https://doi.org/10.1016/j.cell.2012.01.021
Shema-Didi L et al (2016) Prevention of contrast-induced nephropathy with single bolus erythropoietin in patients with diabetic kidney disease: a randomized controlled trial. Nephrology (Carlton) 21:295–300. https://doi.org/10.1111/nep.12609
Spaliviero M et al (2018) Intravenous mannitol versus placebo during partial nephrectomy in patients with normal kidney function: a double-blind, clinically-integrated randomized trial. Eur Urol 73:53–59. https://doi.org/10.1016/j.eururo.2017.07.038
Sugimoto H et al (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18:396–404. https://doi.org/10.1038/nm.2629
Thapalia BA, Zhou Z, Lin X (2014) Autophagy, a process within reperfusion injury: an update. Int J Clin Exp Pathol 7:8322–8341
Tillet S et al (2016) Inhibition of coagulation proteases Xa and IIa decreases ischemia–reperfusion injuries in a preclinical renal transplantation model. Transl Res 178:95–106 e101. https://doi.org/10.1016/j.trsl.2016.07.014
Torras J, Herrero-Fresneda I, Lloberas N, Riera M, Ma Cruzado J, Ma Grinyo J (2002) Promising effects of ischemic preconditioning in renal transplantation. Kidney Int 61:2218–2227
Turer AT, Hill JA (2010) Pathogenesis of myocardial ischemia–reperfusion injury and rationale for therapy. Am J Cardiol 106:360–368. https://doi.org/10.1016/j.amjcard.2010.03.032
van den Akker EK, Dor FJ, JN IJ, de Bruin RW (2015) MicroRNAs in kidney transplantation: living up to their expectations? J Transplant 2015:354826 https://doi.org/10.1155/2015/354826
Wang HJ, Varner A, AbouShwareb T, Atala A, Yoo JJ (2012) Ischemia/reperfusion-induced renal failure in rats as a model for evaluating cell therapies. Ren Fail 34:1324–1332. https://doi.org/10.3109/0886022X.2012.725292
Wang X, Bonventre JV, Parrish AR (2014) The aging kidney: increased susceptibility to nephrotoxicity. Int J Mol Sci 15:15358–15376. https://doi.org/10.3390/ijms150915358
Wang Z et al (2012) The protective effect of prolyl-hydroxylase inhibition against renal ischaemia requires application prior to ischaemia but is superior to EPO treatment. Nephrol Dial Transplant 27:929–936
Wever KE et al (2012) Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS One 7:e32296. https://doi.org/10.1371/journal.pone.0032296
Wu MY et al (2018) Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 46:1650–1667. https://doi.org/10.1159/000489241
Yamashita J, Ohkita M, Takaoka M, Kaneshiro Y, Matsuo T, Kaneko K, Matsumura Y (2007) Role of Na+/H+ exchanger in the pathogenesis of ischemic acute renal failure in mice. J Cardiovasc Pharmacol 49:154–160. https://doi.org/10.1097/FJC.0b013e318030c2c9
Yanagita M (2006) Modulator of bone morphogenetic protein activity in the progression of kidney diseases. Kidney Int 70:989–993. https://doi.org/10.1038/sj.ki.5001731
Yang B, Xu J, Xu F, Zou Z, Ye C, Mei C, Mao Z (2014) Intravascular administration of mannitol for acute kidney injury prevention: a systematic review and meta-analysis. PLoS One 9:e85029. https://doi.org/10.1371/journal.pone.0085029
Yuan W, Wu JY, Zhao YZ, Li J, Li JB, Li ZH, Li CS (2017) Effect of mild hypothermia on renal ischemia/reperfusion injury after cardiopulmonary resuscitation in a swine model. Acta Cir Bras 32:523–532. https://doi.org/10.1590/s0102-865020170070000003
Zarjou A, Sanders PW, Mehta RL, Agarwal A (2012) Enabling innovative translational research in acute kidney injury. Clin Transl Sci 5:93–101. https://doi.org/10.1111/j.1752-8062.2011.00302.x
Zhang L, Diao Y, Chen G, Tanaka A, Eastwood GM, Bellomo R (2016) Remote ischemic conditioning for kidney protection: a meta-analysis. J Crit Care 33:224–232. https://doi.org/10.1016/j.jcrc.2016.01.026
Funding
This work was in part supported by the Austin Health Medical Research Foundation and by The University of Melbourne.
Author information
Authors and Affiliations
Contributions
Manuscript writing/editing: all authors.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical statement
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
For this type of study formal consent is not required.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
O’Kane, D., Baldwin, G.S., Bolton, D.M. et al. Preconditioning against renal ischaemia reperfusion injury: the failure to translate to the clinic. J Nephrol 32, 539–547 (2019). https://doi.org/10.1007/s40620-019-00582-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40620-019-00582-6