Skip to main content

Advertisement

Log in

Combination of spironolactone and sitagliptin improves clinical outcomes of outpatients with COVID-19: a prospective cohort study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

There are evidences showing that sitagliptin and spironolactone can potentially improve the clinical outcomes of COVID-19 cases. In this observational study on acutely symptomatic outpatient COVID-19 cases, we investigated the effects of spironolactone and sitagliptin on the outcomes of the disease.

Methods

This is a prospective, naturally randomized cohort study. We followed mild to moderate symptomatic COVID-19 patients, who were treated with either combination (spironolactone 100 mg daily and sitagliptin 100 mg daily) or standard (steroid, antiviral and/or supportive care) therapy up to 30 days. The primary outcome was hospitalization rate. The secondary outcomes included ER visit, duration of disease, and complications, such as hypoglycemia, low blood pressure or altered mental status.

Results

Of the 206 patients referred to clinics randomly, 103 received standard therapy and 103 treated with combination therapy. There were no significant differences in baseline characteristics, except for slightly higher clinical score in control group (6.92 ± 4.01 control, 4.87 ± 2.92 combination; P < 0.0001). Treatment with combination therapy was associated with lower admission rate (5.8% combination, 22.3% control; P = 0.0011), ER visits (7.8% combination, 23.3% control; P = 0.0021) and average duration of symptoms (6.67 ± 2.30 days combination, 18.71 ± 6.49 days control; P ≤ 0.0001).

Conclusions

The combination of sitagliptin and spironolactone reduced duration of COVID infection and hospital visits better than standard therapeutic approaches in outpatients with COVID-19. The effects of combination of sitagliptin and spironolactone in COVID-19 patients should be further verified in a double-blind, randomized, placebo-controlled trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Shiraz University (MAD, YM, HF, FSRR, AP and MH) generated the data. University of Kentucky (KA and RA) has de-identified data and analyzed (RA) the data. The de-identified data are available for further investigations.

Abbreviations

ACE2:

Angiotensin-converting enzyme 2

ADAM17:

Disintegrin and metalloproteinase domain-containing protein 17

COVID-19:

Coronavirus disease 2019

DPP4:

Dipeptidyl peptidase-4

ER:

Emergency room

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SUMS:

Shiraz University of Medical Sciences

TMPRSS2:

Transmembrane protease serine 2

References

  1. Hopkins J (2020) Coronavirus resource center. Im Internet (Stand: 1904 2020). https://coronavirus.jhu.edu/map.html

  2. Gao YD, Ding M, Dong X, Zhang JJ, KursatAzkur A, Azkur D, Gan H, Sun YL, Fu W, Li W, Liang HL, Cao YY, Yan Q, Cao C, Gao HY, Brüggen MC, van de Veen W, Sokolowska M, Akdis M, Akdis CA (2021) Risk factors for severe and critically ill COVID-19 patients: a review. Allergy 76(2):428–455

    Article  PubMed  CAS  Google Scholar 

  3. Christie A, Henley SJ, Mattocks L, Fernando R, Lansky A, Ahmad FB, Adjemian J, Anderson RN, Binder AM, Carey K, Dee DL, Dias T, Duck WM, Gaughan DM, Lyons BC, McNaghten AD, Park MM, Reses H, Rodgers L, Van Santen K, Walker D, Beach MJ (2021) Decreases in COVID-19 cases, emergency department visits, hospital admissions, and deaths among older adults following the introduction of COVID-19 vaccine—United States, September 6, 2020-May 1, 2021. MMWR Morb Mortal Wkly Rep 70(23):858–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kustin T, Harel N, Finkel U, Perchik S, Harari S, Tahor M, Caspi I, Levy R, Leshchinsky M, Ken Dror S, Bergerzon G, Gadban H, Gadban F, Eliassian E, Shimron O, Saleh L, Ben-Zvi H, Keren Taraday E, Amichay D, Ben-Dor A, Sagas D, Strauss M, Shemer Avni Y, Huppert A, Kepten E, Balicer RD, Netzer D, Ben-Shachar S, Stern A (2021) Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med 20(1):236

    Google Scholar 

  5. Xie J, Wang Z, Liang J, Lin H, Yang Z, Wang Y, Liang H, Wu H, Chen R, Ou Y, Wang F, Wang Y, Wang Y, Luo W, Zhang J, Li N, Li Z, Jiang M, Li S, Li J (2021) Critical review of the scientific evidence and recommendations in COVID-19 management guidelines. Open Forum Infect Dis 8(8):ofab376

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Xiao J, Hooper AT, Hamilton JD, Musser BJ, Rofail D, Hussein M, Im J, Atmodjo DY, Perry C, Pan C, Mahmood A, Hosain R, Davis JD, Turner KC, Baum A, Kyratsous CA, Kim Y, Cook A, Kampman W, Roque-Guerrero L, Acloque G, Aazami H, Cannon K, Simón-Campos JA, Bocchini JA, Kowal B, DiCioccio AT, Soo Y, Geba GP, Stahl N, Lipsich L, Braunstein N, Herman G, Yancopoulos GD (2021) REGEN-COV antibody combination and outcomes in outpatients with Covid-19. New Eng J Med

  7. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Peacock SJ, Robertson DL (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19(7):409–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu J, Errico JM, Xie X, Suryadevara N, Gilchuk P, Zost SJ, Tahan S, Droit L, Turner JS, Kim W, Schmitz AJ, Thapa M, Wang D, Boon ACM, Presti RM, O’Halloran JA, Kim AHJ, Deepak P, Pinto D, Fremont DH, Crowe JE Jr, Corti D, Virgin HW, Ellebedy AH, Shi PY, Diamond MS (2021) Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 27(4):717–726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell

  10. Vankadari N, Wilce JA (2020) Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 9(1):601–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY) 367(6483):1260–1263

    Article  CAS  Google Scholar 

  12. Zipeto D, Palmeira JDF, Argañaraz GA, Argañaraz ER (2020) ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front Immunol 11:576745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yeung ML, Teng JLL, Jia L, Zhang C, Huang C, Cai JP, Zhou R, Chan KH, Zhao H, Zhu L, Siu KL, Fung SY, Yung S, Chan TM, To KK, Chan JF, Cai Z, Lau SKP, Chen Z, Jin DY, Woo PCY, Yuen KY (2021) Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell 184(8):2212-2228.e2212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wilcox CS, Pitt B (2020) Is spironolactone the preferred renin-angiotensin-aldosterone inhibitor for protection against COVID-19? J Cardiovasc Pharmacol 77(3):323–331

    Article  PubMed  Google Scholar 

  15. Satoh M, Ishikawa Y, Minami Y, Akatsu T, Nakamura M (2006) Eplerenone inhibits tumour necrosis factor alpha shedding process by tumour necrosis factor alpha converting enzyme in monocytes from patients with congestive heart failure. Heart 92(7):979–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dong D, Fan TT, Ji YS, Yu JY, Wu S, Zhang L (2019) Spironolactone alleviates diabetic nephropathy through promoting autophagy in podocytes. Int Urol Nephrol 51(4):755–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Keidar S, Gamliel-Lazarovich A, Kaplan M, Pavlotzky E, Hamoud S, Hayek T, Karry R, Abassi Z (2005) Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ Res 97(9):946–953

    Article  PubMed  CAS  Google Scholar 

  18. Rakhmat II, Kusmala YY, Handayani DR, Juliastuti H, Nawangsih EN, Wibowo A, Lim MA, Pranata R (2021) Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19)—a systematic review, meta-analysis, and meta-regression. Diabet Metab Syndrome 15(3):777–782

    Article  CAS  Google Scholar 

  19. Abbasi F, Adatorwovor R, Davarpanah MA, Mansoori Y, Hajiani M, Azodi F, Sefidbakht S, Davoudi S, Rezaei F, Mohammadmoradi S, Asadipooya K (2022) A randomized trial of sitagliptin and spironolactone with combination therapy in hospitalized adults with COVID-19. J Endocr Soc 6(4):bvac017

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rahimi F, TalebiBezmin Abadi A (2021) Emergence of the delta plus variant of SARS-CoV-2 in Iran. Gene Reports 25:101341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Garcia M, Lipskiy N, Tyson J, Watkins R, Esser ES, Kinley T (2020) Centers for Disease Control and Prevention 2019 novel coronavirus disease (COVID-19) information management: addressing national health-care and public health needs for standardized data definitions and codified vocabulary for data exchange. J Am Med Inform Assoc 27(9):1476–1487

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blair JE, Gotimukul A, Wang F, Mina SA, Bartels HC, Burns MW, Kole AE, Vikram HR, Gea-Banacloche JC, Seville MT, Petty SAB, Vikram A, Orenstein R (2021) Mild to moderate COVID-19 illness in adult outpatients: characteristics, symptoms, and outcomes in the first 4 weeks of illness. Medicine 100(24):e26371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rahmanzade R, Rahmanzadeh R, Hashemian SM, Tabarsi P (2020) Iran’s approach to COVID-19: evolving treatment protocols and ongoing clinical trials. Front Public Health 8:551889

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goodacre S, Thomas B, Sutton L, Burnsall M, Lee E, Bradburn M, Loban A, Waterhouse S, Simmonds R, Biggs K, Marincowitz C, Schutter J, Connelly S, Sheldon E, Hall J, Young E, Bentley A, Challen K, Fitzsimmons C, Harris T, Lecky F, Lee A, Maconochie I, Walter D (2021) Derivation and validation of a clinical severity score for acutely ill adults with suspected COVID-19: the PRIEST observational cohort study. PLoS One 16(1):e0245840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tsang HF, Chan LWC, Cho WCS, Yu ACS, Yim AKY, Chan AKC, Ng LPW, Wong YKE, Pei XM, Li MJW, Wong SC (2021) An update on COVID-19 pandemic: the epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev Anti Infect Ther 19(7):877–888

    Article  PubMed  CAS  Google Scholar 

  26. Peacocke EF, Heupink LF, Frønsdal K, Dahl EH, Chola L (2021) Global access to COVID-19 vaccines: a scoping review of factors that may influence equitable access for low and middle-income countries. BMJ Open 11(9):e049505

    Article  PubMed  Google Scholar 

  27. McCullough PA, Kelly RJ, Ruocco G, Lerma E, Tumlin J, Wheelan KR, Katz N, Lepor NE, Vijay K, Carter H, Singh B, McCullough SP, Bhambi BK, Palazzuoli A, De Ferrari GM, Milligan GP, Safder T, Tecson KM, Wang DD, McKinnon JE, O’Neill WW, Zervos M, Risch HA (2021) Pathophysiological basis and rationale for early outpatient treatment of SARS-CoV-2 (COVID-19) infection. Am J Med 134(1):16–22

    Article  PubMed  CAS  Google Scholar 

  28. Lee TC, Bortolussi-Courval É, Belga S, Daneman N, Chan AK, Hanula R, Ezer N, McDonald EG (2022) Inhaled corticosteroids for outpatients with Covid-19: a meta-analysis. Eur Respir J 9:763

    Google Scholar 

  29. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, Martín-Quirós A, Caraco Y, Williams-Diaz A, Brown ML, Du J, Pedley A, Assaid C, Strizki J, Grobler JA, Shamsuddin HH, Tipping R, Wan H, Paschke A, Butterton JR, Johnson MG, De Anda C (2022) Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. New Eng J Med 386(6):509–520

    Article  PubMed  Google Scholar 

  30. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, Baniecki M, Hendrick VM, Damle B, Simón-Campos A, Pypstra R, Rusnak JM (2022) Oral Nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med 386(15):1397–1408

    Article  PubMed  CAS  Google Scholar 

  31. Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, Oguchi G, Ryan P, Nielsen BU, Brown M, Hidalgo A, Sachdeva Y, Mittal S, Osiyemi O, Skarbinski J, Juneja K, Hyland RH, Osinusi A, Chen S, Camus G, Abdelghany M, Davies S, Behenna-Renton N, Duff F, Marty FM, Katz MJ, Ginde AA, Brown SM, Schiffer JT, Hill JA (2022) Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med 386(4):305–315

    Article  PubMed  CAS  Google Scholar 

  32. Mahase E (2021) Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. British Medical Journal Publishing Group

    Google Scholar 

  33. Lin WT, Hung SH, Lai CC, Wang CY, Chen CH (2022) The impact of neutralizing monoclonal antibodies on the outcomes of COVID-19 outpatients: a systematic review and meta-analysis of randomized controlled trials. J Med Virol 94(5):2222–2229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Coulson JM, Adams A, Gray LA, Evans A (2022) COVID-19 "Rebound" associated with nirmatrelvir/ritonavir pre-hospital therapy. J Infect 85(4):436–480

  35. Vitiello A (2022) Sars-Cov-2 and risk of antiviral drug resistance. Ir J Med Sci 191(5):2367–2368

    Article  PubMed  CAS  Google Scholar 

  36. Komorowski A, Tseng A, Vandersluis S (2022) Evidence-based recommendations on the use of nirmatrelvir/ritonavir (Paxlovid) for adults in Ontario. Sci Brief Ontario COVID-19 Sci Advisory Table 3:57

    Google Scholar 

  37. Usher AD (2022) The global COVID-19 treatment divide. Lancet (London, England) 399(10327):779–782

    Article  PubMed  CAS  Google Scholar 

  38. Saravolatz LD, Depcinski S, Sharma M (2023) Molnupiravir and nirmatrelvir-ritonavir: oral coronavirus disease 2019 antiviral drugs. Clin Infect Dis 76(1):165–171

    Article  PubMed  Google Scholar 

  39. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181(4):905-913.e907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wysocki J, Ye M, Hassler L, Gupta AK, Wang Y, Nicoleascu V, Randall G, Wertheim JA, Batlle D (2021) A novel soluble ACE2 variant with prolonged duration of action neutralizes SARS-CoV-2 infection in human kidney organoids. J Am Soc Nephrol 32(4):795–803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G (2020) SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res 21(1):182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Angeli F, Zappa M, Reboldi G, Trapasso M, Cavallini C, Spanevello A, Verdecchia P (2021) The pivotal link between ACE2 deficiency and SARS-CoV-2 infection: one year later. Eur J Intern Med 93:28–34

  43. Jeon D, Son M, Choi J (2021) Effect of spironolactone on COVID-19 in patients with underlying liver cirrhosis: a nationwide case-control study in South Korea. Front Med 8:629176

    Article  Google Scholar 

  44. Mareev VY, Orlova YA, Plisyk AG, Pavlikova EP, Matskeplishvili ST, Akopyan ZA, Seredenina EM, Potapenko AV, Agapov MA, Asratyan DA, Dyachuk LI, Samokhodskaya LM, Mershina E, Sinitsyn VE, Pakhomov PV, Bulanova MM, Fuks AA, Mareev YV, Begrambekova YL, Kamalov A (2020) results of open-label non-randomized comparative clinical trial: “bromhexine and spironolactone for coronavirus infection requiring hospitalization” (BISCUIT). Kardiologiia 60(11):4–15

    Article  PubMed  Google Scholar 

  45. Jackson CB, Farzan M, Chen B, Choe H (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23(1):3–20

    Article  PubMed  CAS  Google Scholar 

  46. Synowiec A, Szczepański A, Barreto-Duran E, Lie LK, Pyrc K (2021) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a systemic infection. Clin Microbiol Rev 34(2):e00133–e00120

  47. Solerte SB, Di Sabatino A, Galli M, Fiorina P (2020) Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol 57(7):779–783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bakhtiari M, Asadipooya K (2022) Metainflammation in COVID-19. Endocr Metab Immune Disord Drug Targets 22(12):1154–1166

  49. Ben Nasr M, D’Addio F, Montefusco L, Usuelli V, Loretelli C, Rossi A, Pastore I, Abdelsalam A, Maestroni A, Dell’Acqua M, Ippolito E, Assi E, Seelam AJ, Fiorina RM, Chebat E, Morpurgo P, Lunati ME, Bolla AM, Abdi R, Bonventre JV, Rusconi S, Riva A, Corradi D, Santus P, Clark P, Nebuloni M, Baldi G, Finzi G, Folli F, Zuccotti GV, Galli M, Herold KC, Fiorina P (2022) Indirect and direct effects of SARS-CoV-2 on human pancreatic islets. Diabetes 71(7):1579–1590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, Weil T, Koepke L, Bozzo CP, Read C, Fois G, Eiseler T, Gehrmann J, van Vuuren J, Wessbecher IM, Frick M, Costa IG, Breunig M, Grüner B, Peters L, Schuster M, Liebau S, Seufferlein T, Stenger S, Stenzinger A, MacDonald PE, Kirchhoff F, Sparrer KMJ, Walther P, Lickert H, Barth TFE, Wagner M, Münch J, Heller S, Kleger A (2021) SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 3(2):149–165

    Article  PubMed  Google Scholar 

  51. Montefusco L, Ben Nasr M, D’Addio F, Loretelli C, Rossi A, Pastore I, Daniele G, Abdelsalam A, Maestroni A, Dell’Acqua M, Ippolito E, Assi E, Usuelli V, Seelam AJ, Fiorina RM, Chebat E, Morpurgo P, Lunati ME, Bolla AM, Finzi G, Abdi R, Bonventre JV, Rusconi S, Riva A, Corradi D, Santus P, Nebuloni M, Folli F, Zuccotti GV, Galli M, Fiorina P (2021) Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab 3(6):774–785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Loretelli C, Abdelsalam A, D'Addio F, Ben Nasr M, Assi E, Usuelli V, Maestroni A, Seelam AJ, Ippolito E, Di Maggio S, Loreggian L, Radovanovic D, Vanetti C, Yang J, El Essawy B, Rossi A, Pastore I, Montefusco L, Lunati ME, Bolla AM, Biasin M, Antinori S, Santus P, Riva A, Zuccotti GV, Galli M, Rusconi S, Fiorina P (2021) PD-1 blockade counteracts post-COVID-19 immune abnormalities and stimulates the anti-SARS-CoV-2 immune response. JCI Insight 6(24):e146701

  53. Asadipooya K (2022) Letter to the editor from Asadipooya: “obesity and COVID-19: mechanistic insights from adipose tissue”. J Clin Endocrinol Metab 107(10):e4269

  54. Davarpanah MA, Adatorwovor R, Mansoori Y, Ramsheh FSR, Parsa A, Hajiani M, Faramarzi H, Kavuluru R, Asadipooya K (2022) Combination of spironolactone and sitagliptin improves clinical outcomes of outpatients with COVID-19: a prospective cohort study. medRxiv. 2022.2001.2021.22269322

  55. Deacon CF (2020) Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 16(11):642–653

    Article  PubMed  CAS  Google Scholar 

  56. Stoian AP, Sachinidis A, Stoica RA, Nikolic D, Patti AM, Rizvi AA (2020) The efficacy and safety of dipeptidyl peptidase-4 inhibitors compared to other oral glucose-lowering medications in the treatment of type 2 diabetes. Metabolism 109:154295

    Article  PubMed  CAS  Google Scholar 

  57. Martin KA, Anderson RR, Chang RJ, Ehrmann DA, Lobo RA, Murad MH, Pugeat MM, Rosenfield RL (2018) Evaluation and treatment of hirsutism in premenopausal women: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 103(4):1233–1257

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Shiraz University Clinics for helping with data collection.

Funding

Shiraz University of Medical Sciences supported this project (Grant IR.SUMS.MED.REC.1399.550). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KA proposed the idea and designed the study. KA, RA, YM and RK wrote the manuscript. MAD, YM, HF, FSRR, AP, and MH collected the data. RA provided statistical analysis and wrote statistical part. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to K. Asadipooya.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Iranian registry of clinical trial

IRCT registration number: IRCT20201003048904N2, Registration date: December 10, 2020.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 59 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davarpanah, M.A., Adatorwovor, R., Mansoori, Y. et al. Combination of spironolactone and sitagliptin improves clinical outcomes of outpatients with COVID-19: a prospective cohort study. J Endocrinol Invest 47, 235–243 (2024). https://doi.org/10.1007/s40618-023-02141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02141-0

Keywords

Navigation