Skip to main content

Advertisement

Log in

Is there any gender difference in epidemiology, clinical presentation and co-morbidities of non-functioning pituitary adenomas? A prospective survey of a National Referral Center and review of the literature

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Gender differences in patients diagnosed with non-functioning Pituitary Adenomas (NFPA) in a National Referral Center for Pituitary Tumors at the Federico II University of Naples, Italy.

Methods

Patients newly diagnosed with non-functioning sellar masses found on pituitary Magnetic Resonance Imaging from January 1st 2016 to December 31th 2018 underwent anthropometric measurements, basal evaluation of pituitary function, and metabolic assessment. Fatty live index (FLI) and visceral adiposity index (VAI) were calculated.

Results

Seventy-three patients (35 males, 51.1 ± 17.0 years; 38 females, 41.8 ± 18.1 years) presented with NFPA. Lesions > 1 cm (85.7% vs. 47.3%; χ2 = 10.26, p = 0.001) and hypopituitarism (77.1% vs. 7.9%; χ2 = 33.29, p = 0.001) were more frequent in males than females. The highest sizes of pituitary adenomas were significantly associated with male gender (OR = 1.05, p = 0.049; R2 = 0.060; IC 1.00–1.10). Headache (62.8% vs. 31.6%; χ2 = 5.96, p = 0.015) and visual field deficits (57.1% vs. 26.3%; χ2 = 5.93, p = 0.015) were significantly more frequent in males than in females. There was no sex difference in obesity prevalence, but the metabolic syndrome was more common among males than females (60.6% vs. 26.3%; χ2 = 7.14, p = 0.001). FLI was also higher in males (69.6 ± 27.3 vs. 49.2 ± 31.3; p < 0.001), while there were no differences in VAI.

Conclusions

Apart from the possible delay in the diagnosis induced by the gender differences in symptom presentation, the higher prevalence of macroadenomas amongst NFPA in males compared with females let to hypothesize a key role of the sex hormone profile as predictive factors of their biological behavior and metabolic profile. Further studies are, however, mandatory to better support the influence of gender differences on onset, progression, and metabolic consequences of NFPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Vasilev V, Rostomyan L, Daly AF et al (2016) Pituitary “incidentaloma”: Neuroradiological assessment and differential diagnosis. Eur J Endocrinol 175:R171–R184

    Article  CAS  Google Scholar 

  2. Ntali G, Wass JA (2018) Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 21:111–118

    Article  Google Scholar 

  3. Mercado M, Melgar V, Salame L, Cuenca D (2017) Clinically non-functioning pituitary adenomas: Pathogenic, diagnostic and therapeutic aspects. Endocrinol Diabetes Nutr 64:384–395

    Article  Google Scholar 

  4. Molitch ME (2014) Nonfunctioning pituitary tumors. In: Handbook of clinical neurology

  5. Nielsen EH, Lindholm J, Laurberg P et al (2007) Nonfunctioning pituitary adenoma: Incidence, causes of death and quality of life in relation to pituitary function. Pituitary. https://doi.org/10.1007/s11102-007-0018-x

    Article  PubMed  Google Scholar 

  6. Lamas C, Garcia-Martinez A, Camara R et al (2019) Silent somatotropinomas. Minerva Endocrinol 44:137

    Article  Google Scholar 

  7. Drummond J, Roncaroli F, Grossman AB, Korbonits M (2019) Clinical and pathological aspects of silent pituitary adenomas. J Clin Endocrinol Metabol 10:2473–2489

    Article  Google Scholar 

  8. Aydin B, Arga KY (2019) Co-expression network analysis elucidated a core module in association with prognosis of nonfunctioning non-invasive human pituitary adenoma. Front Endocrinol. https://doi.org/10.3389/fendo.2019.00361

    Article  Google Scholar 

  9. Taniguchi-Ponciano K, Gomez-Apo E, Chavez-Macias L et al (2020) Molecular alterations in non-functioning pituitary adenomas. Cancer Biomarkers. https://doi.org/10.3233/cbm-191121

    Article  PubMed  Google Scholar 

  10. Kim HI, Lim H, Moon A (2018) Sex differences in cancer: Epidemiology, genetics and therapy. Biomol Therapeutics 26:335

    Article  CAS  Google Scholar 

  11. Recouvreux MV, Faraoni EY, Camilletti MA et al (2018) Sex differences in the pituitary TGFβ1 system: The role of TGFβ1 in prolactinoma development. Front Neuroendocrinol 50:118–122

    Article  CAS  Google Scholar 

  12. Arasho BD, Schaller B, Sandu N, Zenebe G (2009) Gender-related differences in pituitary adenomas. Exper Clin Endocrinol Diabetes 117:567–572

    Article  CAS  Google Scholar 

  13. Savanelli MC, Scarano E, Muscogiuri G et al (2016) Cardiovascular risk in adult hypopituitaric patients with growth hormone deficiency: is there a role for vitamin D? Endocrine. https://doi.org/10.1007/s12020-015-0779-3

    Article  PubMed  Google Scholar 

  14. Barrea L, Fabbrocini G, Annunziata G et al (2019) Role of nutrition and adherence to the Mediterranean diet in the multidisciplinary approach of hidradenitis suppurativa: evaluation of nutritional status and its association with severity of disease. Nutrients. https://doi.org/10.3390/nu11010057

    Article  PubMed  PubMed Central  Google Scholar 

  15. World Health Organization WHO (2020) https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi. Accessed 4 May 2020

  16. National Center for Health Statistics (2011) No Title. In: January 2011. https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/Anthropometry_Procedures_Manual.pdf. Accessed 21 May 2020

  17. Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the third report (NCEP) -adult treatment panel III. J Am Med Assoc. https://doi.org/10.1001/jama.285.19.2486

    Article  Google Scholar 

  18. Fleseriu M, Hashim IA, Karavitaki N et al (2016) Hormonal replacement in hypopituitarism in adults: An endocrine society clinical practice guideline. J Clin Endocrinol Metabol 101:3888–3921

    Article  CAS  Google Scholar 

  19. Savastano S, Di Somma C, Colao A et al (2015) Preliminary data on the relationship between circulating levels of Sirtuin 4, anthropometric and metabolic parameters in obese subjects according to growth hormone/insulin-like growth factor-1 status. Growth Hormon IGF Res. https://doi.org/10.1016/j.ghir.2014.10.006

    Article  Google Scholar 

  20. Barrea L, Di Somma C, Macchia PE et al (2015) Influence of nutrition on somatotropic axis: milk consumption in adult individuals with moderate-severe obesity. Clin Nutr. https://doi.org/10.1016/j.clnu.2015.12.007

    Article  PubMed  Google Scholar 

  21. Barrea L, Altieri B, Muscogiuri G et al (2018) Impact of nutritional status on gastroenteropancreatic neuroendocrine tumors (GEP-NET) aggressiveness. Nutrients. https://doi.org/10.3390/nu10121854

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barrea L, Tarantino G, Di SC et al (2017) Adherence to the Mediterranean diet and circulating levels of Sirtuin 4 in obese patients: a novel association. Oxidat Med Cell Longevity. https://doi.org/10.1155/2017/6101254

    Article  Google Scholar 

  23. Barrea L, Muscogiuri G, Di Somma C et al (2018) Coffee consumption, metabolic syndrome and clinical severity of psoriasis: good or bad stuff? Arch Toxicol. https://doi.org/10.1007/s00204-018-2193-0

    Article  PubMed  Google Scholar 

  24. Amato MC, Giordano C (2014) Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol. https://doi.org/10.1155/2014/730827

    Article  PubMed  PubMed Central  Google Scholar 

  25. Amato MC, Giordano C, Pitrone M, Galluzzo A (2011) Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids in Health and Disease. https://doi.org/10.1186/1476-511X-10-183

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bedogni G, Bellentani S, Miglioli L et al (2006) The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterology. https://doi.org/10.1186/1471-230X-6-33

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kaltsas GA, Evanson J, Chrisoulidou A, Grossman AB (2008) The diagnosis and management of parasellar tumours of the pituitary. Endocr Relat Cancer 15(885):903

    Google Scholar 

  28. Fernandez A, Karavitaki N, Wass JAH (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in (Oxfordshire, UK). Clin Endocrinol. https://doi.org/10.1111/j.1365-2265.2009.03667.x

    Article  Google Scholar 

  29. Solari D, Zenga F, Angileri FF et al (2019) A survey on pituitary surgery in Italy. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.11.186

    Article  PubMed  Google Scholar 

  30. Daly AF, Tichomirowa MA, Beckers A (2009) The epidemiology and genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metabol 23:543–554

    Article  CAS  Google Scholar 

  31. Colao A, Di Sarno A, Cappabianca P et al (2003) Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. Eur J Endocrinol. https://doi.org/10.1530/eje.0.1480325

    Article  PubMed  Google Scholar 

  32. Schaller B (2003) Gender-related differences in non-functioning pituitary adenomas. Neuroendocrinol Lett 24:425–430

    PubMed  Google Scholar 

  33. Iglesias P, Arcano K, Triviño V et al (2017) Prevalence, clinical features, and natural history of incidental clinically non-functioning pituitary adenomas. Horm Metab Res. https://doi.org/10.1055/s-0043-115645

    Article  PubMed  Google Scholar 

  34. Tjörnstrand A, Gunnarsson K, Evert M et al (2014) The incidence rate of pituitary adenomas in western Sweden for the period 2001–2011. Eur J Endocrinol. https://doi.org/10.1530/EJE-14-0144

    Article  PubMed  Google Scholar 

  35. Agustsson TT, Baldvinsdottir T, Jonasson JG et al (2015) The epidemiology of pituitary adenomas in Iceland, 1955–2012: a nationwide population-based study. Eur J Endocrinol. https://doi.org/10.1530/EJE-15-0189

    Article  PubMed  Google Scholar 

  36. Zerehpoosh FB, Sabeti S, Sharifi G et al (2015) Demographic study of pituitary adenomas undergone trans-sphenoidal surgery in Loghman Hakim Hospital, Tehran, Iran 2001–2013. Indian J Endocrinol Metabol 19:791

    Article  CAS  Google Scholar 

  37. Fainstein Day P, Loto MG, Glerean M et al (2016) Incidence and prevalence of clinically relevant pituitary adenomas: Retrospective cohort study in a health management organization in Buenos Aires, Argentina. Arch Endocrinol Metabol. https://doi.org/10.1590/2359-3997000000195

    Article  Google Scholar 

  38. Vaninetti NM, Clarke DB, Zwicker DA et al (2018) A comparative, population-based analysis of pituitary incidentalomas vs clinically manifesting sellar masses. Endocrine Connect. https://doi.org/10.1530/EC-18-0065

    Article  Google Scholar 

  39. Aguirre MN, Sampedro-Nunez M, Levi AR et al (2019) Analysis of gender-related differences in clinically non-functioning pituitary adenomas. Endocrine Abstracts. https://doi.org/10.1530/endoabs.63.P1106

    Article  Google Scholar 

  40. Cooper O, Melmed S (2012) Subclinical hyperfunctioning pituitary adenomas: the silent tumors. Best Pract Res Clin Endocrinol Metabol 26:447–460

    Article  CAS  Google Scholar 

  41. Katavetin P, Cheunsuchon P, Grant E et al (2010) Rathke’s cleft cysts in children and adolescents: Association with female puberty. J Pediatr Endocrinol Metab. https://doi.org/10.1515/jpem.2010.184

    Article  PubMed  Google Scholar 

  42. Wester K (1999) Peculiarities of intracranial arachnoid cysts: Location, sidedness, and sex distribution in 126 consecutive patients. Neurosurgery. https://doi.org/10.1097/00006123-199910000-00008

    Article  PubMed  Google Scholar 

  43. Helland CA, Lund-Johansen M, Wester K (2010) Location, sidedness, and sex distribution of intracranial arachnoid cysts in a population-based sample. J Neurosurg. https://doi.org/10.3171/2009.11.JNS081663

    Article  PubMed  Google Scholar 

  44. Vroonen L, Daly AF, Beckers A (2019) Epidemiology and management challenges in prolactinomas. Neuroendocrinology. https://doi.org/10.1159/000497746

    Article  PubMed  Google Scholar 

  45. Istituto Superiore di Sanità (2018) La sorveglianza PASSI 2018. https://www.epicentro.iss.it/passi/infoPassi/archivio2018. Accessed 25 Jul 2020

  46. Lania A, Gangi E, Romoli R et al (2002) Impaired estrogen-induced negative feedback on gonadotropin secretion in patients with gonadotropin-secreting and nonfunctioning pituitary adenomas. Eur J Clin Invest. https://doi.org/10.1046/j.1365-2362.2002.00981.x

    Article  PubMed  Google Scholar 

  47. Zafar M, Ezzat S, Ramyar L et al (1995) Cell-specific expression of estrogen receptor in the human pituitary and its adenomas. J Clin Endocrinol Metab. https://doi.org/10.1210/jcem.80.12.8530610

    Article  PubMed  Google Scholar 

  48. Pereira-Lima JFS, Marroni CP, Pizarro CB et al (2004) Immunohistochemical detection of estrogen receptor alpha in pituitary adenomas and its correlation with cellular replication. Neuroendocrinology. https://doi.org/10.1159/000077269

    Article  PubMed  Google Scholar 

  49. Burdman JA, Pauni M, Heredia Sereno CM, Bordón AE (2008) Estrogen receptors in human pituitary tumors. Horm Metab Res. https://doi.org/10.1055/s-2008-1065338

    Article  PubMed  Google Scholar 

  50. Hua H, Zhang H, Kong Q, Jiang Y (2018) Mechanisms for estrogen receptor expression in human cancer. Exper Hematol Oncol. https://doi.org/10.1186/s40164-018-0116-7

    Article  Google Scholar 

  51. Zhou K, Jin H, Luo Y (2013) Expression and significance of E-cadherin and β-catenins in pituitary adenoma. Int J Surg Pathol. https://doi.org/10.1177/1066896912471850

    Article  PubMed  Google Scholar 

  52. Oystese KA, Casar-Borota O, Normann KR et al (2017) Estrogen receptor a, a sex-dependent predictor of aggressiveness in nonfunctioning pituitary adenomas: Sstr and sex hormone receptor distribution in NFPA. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2017-00792

    Article  PubMed  Google Scholar 

  53. Makri A, Pissimissis N, Lembessis P et al (2008) The kisspeptin (KiSS-1)/GPR54 system in cancer biology. Cancer Treat Rev 34:682–692

    Article  CAS  Google Scholar 

  54. Bailey M, Silver R (2014) Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 35:111–139

    Article  Google Scholar 

  55. Gahete MD, Vázquez-Borrego MC, Martínez-Fuentes AJ et al (2016) Role of the Kiss1/Kiss1r system in the regulation of pituitary cell function. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2016.07.039

    Article  PubMed  Google Scholar 

  56. Martínez-Fuentes AJ, Molina M, Vázquez-Martínez R et al (2011) Expression of functional KISS1 and KISS1R system is altered in human pituitary adenomas: evidence for apoptotic action of kisspeptin-10. Eur J Endocrinol. https://doi.org/10.1530/EJE-10-0905

    Article  PubMed  Google Scholar 

  57. Yaron M, Renner U, Gilad S et al (2015) KISS1 receptor is preferentially expressed in clinically non-functioning pituitary tumors. Pituitary. https://doi.org/10.1007/s11102-014-0572-y

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CdS, SS and AM; data curation, ES and GdA; formal analysis, CdS, SS, and AC; funding acquisition, CdS, SS, and AC; investigation, ES, GdA, LB, ER, RA; methodology, CdS, SS and AM; writing—original draft, LB and SS; writing—review & editing, CdS, SS, and AC.

Corresponding author

Correspondence to C. Di Somma.

Ethics declarations

Conflicts of interest

The authors have nothing to disclose.

Ethics approval

The study design was made in accordance with the Helsinki II Declaration for Study on human experimentation and approved by the local ethic committee (n. 63/97).

Informed consent

All patients signed their informed consent. Consent for publication: The study design was made in accordance with the Helsinki II Declaration for Study on human experimentation and approved by the local ethic committee (n. 63/97),

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Somma, C., Scarano, E., de Alteriis, G. et al. Is there any gender difference in epidemiology, clinical presentation and co-morbidities of non-functioning pituitary adenomas? A prospective survey of a National Referral Center and review of the literature. J Endocrinol Invest 44, 957–968 (2021). https://doi.org/10.1007/s40618-020-01379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01379-2

Keywords

Article history

  1. Latest

    Is there any gender difference in epidemiology, clinical presentation and co-morbidities of non-functioning pituitary adenomas? A prospective survey of a National Referral Center and review of the literature
    • C. Di Somma
    • E. Scarano
    • G. de Alteriis
    • L. Barrea
    • E. Riccio
    • R. Arianna
    • S. Savastano
    • A. Colao
    Published:
    01 May 2021
    Received:
    23 June 2020
    Accepted:
    30 July 2020

    DOI: https://doi.org/10.1007/s40618-020-01379-2

Navigation