Skip to main content

Advertisement

Log in

Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. Dopaminergic system is interconnected with the hypothalamic–pituitary–thyroid axis. Dopamine (DA) upregulates thyrotropin releasing hormone (TRH) while downregulating thyroid stimulating hormone (TSH) and thyroid hormones. Moreover, TRH stimulates DA release. PD is associated with impaired regulation of TSH and thyroid hormones (TH) levels, which in turn associate with severity and different subtypes of PD, while levodopa and bromocriptine treatment can interfere with hypothalamic–pituitary–thyroid axis. Thyroid disturbances, including hypothyroidism, Hashimoto’s thyroiditis (HT), hyperthyroidism and Graves’ disease (GD) not only increase the risk of PD but also share some clinical signs with PD. Also, several genes including RASD2, WSB1, MAPT, GIRK2, LRRK2 and gene products like neurotensin and NOX/DUOX affect the risk for both PD and thyroid disease. Hypothyroidism is associated with obesity, hypercholesterolemia, anemia and altered cerebral blood flow which are associated with PD pathology. Herein we provide a comprehensive view on the association between PD and thyroid hormones regulation and dysregulations, hoping to provide new avenues towards targeted treatment of PD. We performed a comprehensive search in literature using Pubmed and Scopus, yielding to a total number of 36 original articles that had addressed the association between thyroid hormone disorders and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A et al (2016) Parkinson's disease: autoimmunity and neuroinflammation. Autoimmun Rev 15(10):1005–1011

    PubMed  Google Scholar 

  2. Reich SG, Savitt JM (2019) Parkinson's disease. Med Clin N Am 103(2):337–350

    PubMed  Google Scholar 

  3. Postuma RB, Berg D (2016) Advances in markers of prodromal Parkinson disease. Nat Rev Neurol 12:622

    CAS  PubMed  Google Scholar 

  4. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors—IUPHAR review 13. Br J Pharmacol 172(1):1–23

    CAS  PubMed  Google Scholar 

  5. Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35(11):1503–1519

    CAS  PubMed  Google Scholar 

  6. Boyd KN, Mailman RB (2012) Dopamine receptor signaling and current and future antipsychotic drugs. Handb Exp Pharmacol 212:53–86

    CAS  Google Scholar 

  7. Gaum PM, Gube M, Esser A, Schettgen T, Quinete N, Bertram J et al (2019) Depressive symptoms after PCB exposure: hypotheses for underlying pathomechanisms via the thyroid and dopamine system. Int J Environ Res Public Health 16(6):950

    CAS  PubMed Central  Google Scholar 

  8. Bavarsad K, Hosseini M, Hadjzadeh MA, Sahebkar A (2019) The effects of thyroid hormones on memory impairment and Alzheimer's disease. J Cell Physiol 234(9):14633–14640

    CAS  Google Scholar 

  9. Aranda A, Alonso-Merino E, Zambrano A (2013) Receptors of thyroid hormones. Pediatr Endocrinol Rev PER 11(1):2–13

    PubMed  Google Scholar 

  10. Choi SM, Kim BC, Choi KH, Nam TS, Kim JT, Lee SH et al (2014) Thyroid status and cognitive function in euthyroid patients with early Parkinson's disease. Dement Geriatr Cogn Disord 38(3–4):178–185

    PubMed  Google Scholar 

  11. Li X, Sundquist J, Sundquist K (2012) Subsequent risks of Parkinson disease in patients with autoimmune and related disorders: a nationwide epidemiological study from Sweden. Neurodegener Dis 10(1–4):277–284

    CAS  PubMed  Google Scholar 

  12. Stang A (2010) Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    PubMed  Google Scholar 

  13. Ben-Jonathan N (1985) Dopamine: a prolactin-inhibiting hormone. Endocr Rev 6(4):564–589

    CAS  PubMed  Google Scholar 

  14. Bissonette G, Roesch M (2016) Development and function of the midbrain dopamine system: what we know and what we need to. Genes Brain Behav 15(1):62–73

    CAS  PubMed  Google Scholar 

  15. Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F, Rezaei N (2017) Neurotransmission systems in Parkinson’s disease. Rev Neurosci 8(5):509–536

    Google Scholar 

  16. Cantuti-Castelvetri I, Hernandez LF, Keller-McGandy CE, Kett LR, Landy A, Hollingsworth ZR et al (2010) Levodopa-induced dyskinesia is associated with increased thyrotropin releasing hormone in the dorsal striatum of hemi-parkinsonian rats. PLoS ONE 5(11):e13861

    PubMed  PubMed Central  Google Scholar 

  17. Daimon CM, Chirdon P, Maudsley S, Martin B (2013) The role of thyrotropin releasing hormone in aging and neurodegenerative diseases. Am J Alzheimer's Dis (Columbia, Mo) 1(1)

  18. Zheng C, Chen G, Tan Y, Zeng W, Peng Q, Wang J et al (2018) TRH analog, taltirelin improves motor function of hemi-PD rats without inducing dyskinesia via sustained dopamine stimulating effect. Front Cell Neurosci 12:417

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh O, Pradhan DR, Nagalakashmi B, Kumar S, Mitra S, Sagarkar S et al (2019) Thyrotropin-releasing hormone (TRH) in the brain and pituitary of the teleost, Clarias batrachus and its role in regulation of hypophysiotropic dopamine neurons. J Comp Neurol 527(6):1070–1101

    CAS  PubMed  Google Scholar 

  20. Zheng C, Chen G, Tan Y, Zeng W, Peng Q, Wang J et al (2018) TRH analog, taltirelin protects dopaminergic neurons from neurotoxicity of MPTP and rotenone. Front Cell Neurosci 12:485

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lambeir AM (2011) Interaction of prolyl oligopeptidase with alpha-synuclein. CNS Neurol Disord Drug Targets 10(3):349–354

    CAS  PubMed  Google Scholar 

  22. Goldstein J, Perello M, Nillni EA (2007) Preprothyrotropin-releasing hormone 178–199 affects tyrosine hydroxylase biosynthesis in hypothalamic neurons. J Mol Neurosci 31(1):69–82

    CAS  PubMed  Google Scholar 

  23. Nillni EA, Aird F, Seidah NG, Todd RB, Koenig JI (2001) PreproTRH178–199 and two novel peptides (pFQ7 and pSE14) derived from its processing, which are produced in the paraventricular nucleus of the rat hypothalamus, are regulated during suckling**This work was supported by the National Science Foundation (Grant No. IBN-9507952 to E.A.N.). Endocrinology 142(2):896–906

    CAS  PubMed  Google Scholar 

  24. Nillni EA (2010) Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol 31(2):134–156

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Haugen BR (2009) Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab 23(6):793–800

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pereira JC Jr, Pradella-Hallinan M, Pessoa HDL (2010) Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis. Clinics 65(5):547–554

    Google Scholar 

  27. Feek C, Sawers J, Brown N, Seth J, Irvine W, Toft A (1980) Influence of thyroid status on dopaminergic inhibition of thyrotropin and prolactin secretion: evidence for an additional feedback mechanism in the control of thyroid hormone secretion. J Clin Endocrinol Metab 51(3):585–589

    CAS  PubMed  Google Scholar 

  28. Filippi L, Pezzati M, Cecchi A, Poggi C (2006) Dopamine infusion: a possible cause of undiagnosed congenital hypothyroidism in preterm infants. Pediatr Crit Care Med 7(3):249–251

    PubMed  Google Scholar 

  29. Lestingi L, Bonifati V, Stocchi F, Antonozzi I, Meco G (1992) TRH test and the continuous dopaminergic stimulation in complicated Parkinson’s disease. Eur Neurol 32(2):65–69

    CAS  PubMed  Google Scholar 

  30. Annunziato L, Di Renzo G, Schettini G, Lombardi G, Scopacasa F, Scapagnini U et al (1979) Lack of evidence for an inhibitory role played by tuberoinfundibular dopaminergic neurons on TSH secretion in the rat. Neuroendocrinology 28(6):435–441

    CAS  PubMed  Google Scholar 

  31. Williams FL, Ogston SA, van Toor H, Visser TJ, Hume R (2005) Serum thyroid hormones in preterm infants: associations with postnatal illnesses and drug usage. J Clin Endocrinol Metab 90(11):5954–5963

    CAS  PubMed  Google Scholar 

  32. Kobusiak-Prokopowicz M, Ściborski K, Mysiak A (2012) Effect of intravenous dopamine infusion on pituitary and thyroid function and on nephroprotection. Pol Arch Med Wewn 122(3):82–88

    CAS  PubMed  Google Scholar 

  33. Mori T, Yokota T, Akamizu T, Inoue D, Miyamoto M, Kosugi S et al (1988) Significance of serum thyrotropin and plasma dopamine concentration in the regulation of thyroid function in elderly subjects. Endocrinol Jpn 35(3):469–476

    CAS  PubMed  Google Scholar 

  34. Mouri A, Hoshino Y, Narusawa S, Ikegami K, Mizoguchi H, Murata Y et al (2014) Thyrotoropin receptor knockout changes monoaminergic neuronal system and produces methylphenidate-sensitive emotional and cognitive dysfunction. Psychoneuroendocrinology 48:147–161

    CAS  PubMed  Google Scholar 

  35. Maayan ML, Sellitto RV, Volpert EM (1986) Dopamine and L-dopa: inhibition of thyrotropin-stimulated thyroidal thyroxine release. Endocrinology 118(2):632–636

    CAS  PubMed  Google Scholar 

  36. Ekmen S, Degirmencioglu H, Uras N, Oncel MY, Sari FN, Canpolat FE et al (2015) Effect of dopamine infusion on thyroid hormone tests and prolactin levels in very low birth weight infants. J Matern Fetal Neonatal Med 28(8):924–927

    CAS  PubMed  Google Scholar 

  37. Hassan WA, Aly MS, Rahman TA, Shahat AS (2013) Impact of experimental hypothyroidism on monoamines level in discrete brain regions and other peripheral tissues of young and adult male rats. Int J Dev Neurosci 31(4):225–233

    CAS  PubMed  Google Scholar 

  38. Overstreet DH, Crocker AD, Lawson CA, McIntosh GH, Crocker JM (1984) Alterations in the dopaminergic system and behaviour in rats reared on iodine-deficient diets. Pharmacol Biochem Behav 21(4):561–565

    CAS  PubMed  Google Scholar 

  39. Puymirat J, Faivre-Bauman A, Barret A, Loudes C, Tixier-Vidal A (1985) Does triiodothyronine influence the morphogenesis of fetal mouse mesencephalic dopaminergic neurons cultured in chemically defined medium? Dev Brain Res 23(2):315–317

    CAS  Google Scholar 

  40. Reymond MJ, Benotto W, Lemarchand-Beraud T (1987) The secretory activity of the tuberoinfundibular dopaminergic neurons is modulated by the thyroid status in the adult rat: consequence on prolactin secretion. Neuroendocrinology 46(1):62–68

    CAS  PubMed  Google Scholar 

  41. Shimokawa N, Yousefi B, Morioka S, Yamaguchi S, Ohsawa A, Hayashi H et al (2014) Altered cerebellum development and dopamine distribution in a rat genetic model with congenital hypothyroidism. J Neuroendocrinol 26(3):164–175

    CAS  PubMed  Google Scholar 

  42. Oh-Nishi A, Saji M, Furudate SI, Suzuki N (2005) Dopamine D2-like receptor function is converted from excitatory to inhibitory by thyroxine in the developmental hippocampus. J Neuroendocrinol 17(12):836–845

    CAS  PubMed  Google Scholar 

  43. Schaefer S, Vogt T, Nowak T, Kann PH (2008) Pituitary function and the somatotrophic system in patients with idiopathic Parkinson's disease under chronic dopaminergic therapy. J Neuroendocrinol 20(1):104–109

    CAS  PubMed  Google Scholar 

  44. Munhoz RP, Teive HA, Troiano AR, Hauck PCR, Leiva MHH, Graff H et al (2004) Parkinson's disease and thyroid dysfunction. Parkinsonism Relat Disord 10(6):381–383

    PubMed  Google Scholar 

  45. Bonuccelli U, D'Avino C, Caraccio N, Del Guerra P, Casolaro A, Pavese N et al (1999) Thyroid function and autoimmunity in Parkinson's disease: a study of 101 patients. Parkinsonism Relat Disord 5(1–2):49–53

    CAS  PubMed  Google Scholar 

  46. Vairetti M, Ferrigno A, Rizzo V, Ambrosi G, Bianchi A, Richelmi P et al (2012) Impaired hepatic function and central dopaminergic denervation in a rodent model of Parkinson's disease: a self-perpetuating crosstalk? Biochim Biophys Acta BBA Mol Basis Dis 1822(2):176–184

    CAS  Google Scholar 

  47. Aziz N, Pijl H, Frölich M, Roelfsema F, Roos R (2011) Diurnal secretion profiles of growth hormone, thyrotrophin and prolactin in Parkinson’s disease. J Neuroendocrinol 23(6):519–524

    CAS  PubMed  Google Scholar 

  48. Umehara T, Matsuno H, Toyoda C, Oka H (2015) Thyroid hormone level is associated with motor symptoms in de novo Parkinson’s disease. J Neurol 262(7):1762–1768

    CAS  PubMed  Google Scholar 

  49. Salama M, Helmy B, El-Gamal M, Reda A, Ellaithy A, Tantawy D et al (2013) Role of L-thyroxin in counteracting rotenone induced neurotoxicity in rats. Environ Toxicol Pharmacol 35(2):270–277

    CAS  PubMed  Google Scholar 

  50. Lima FR, Gervais A, Colin C, Izembart M, Neto VM, Mallat M (2001) Regulation of microglial development: a novel role for thyroid hormone. J Neurosci 21(6):2028–2038

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kihara M, Kihara Y, Tukamoto T, Nishimura Y, Watanabe H, Hanakago R et al (1993) Assessment of sudomotor dysfunction in early Parkinson's disease. Eur Neurol 33(5):363–365

    CAS  PubMed  Google Scholar 

  52. Goldstein D, Holmes C, Dendi R, Bruce S, Li S-T (2002) Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology 58(8):1247–1255

    CAS  PubMed  Google Scholar 

  53. Hotta H, Onda A, Suzuki H, Milliken P, Sridhar A (2017) Modulation of calcitonin, parathyroid hormone, and thyroid hormone secretion by electrical stimulation of sympathetic and parasympathetic nerves in anesthetized rats. Front Neurosci 11:375

    PubMed  PubMed Central  Google Scholar 

  54. Melander A, Ericson L, Sundler F, Ingbar S (1974) Sympathetic innervation of the mouse thyroid and its significance in thyroid hormone secretion. Endocrinology 94(4):959–966

    CAS  PubMed  Google Scholar 

  55. Stolakis V, Kalafatakis K, Botis J, Zarros A, Liapi C (2010) The regulatory role of neurotensin on the hypothalamic–anterior pituitary axons: emphasis on the control of thyroid-related functions. Neuropeptides 44(1):1–7

    CAS  PubMed  Google Scholar 

  56. St-Gelais F, Jomphe C, Trudeau L-É (2006) The role of neurotensin in central nervous system pathophysiology: what is the evidence? J Psychiatry Neurosci 31(4):229–245

    PubMed  PubMed Central  Google Scholar 

  57. Cacabelos R (2017) Parkinson's disease: from pathogenesis to pharmacogenomics. Int J Mol Sci 18(3):551

    PubMed Central  Google Scholar 

  58. Berger JR, Kelley RE (1981) Thyroid function in Parkinson disease. Neurology 31(1):93–95

    CAS  PubMed  Google Scholar 

  59. Krulich L (1982) Neurotransmitter control of thyrotropin secretion. Neuroendocrinology 35(2):139–147

    CAS  PubMed  Google Scholar 

  60. Vergès B, Giroud M, Vaillant G, Verges-Patois B, Brun J, Putelat R (1992) Ultrasensitive TSH assay and anti-parkinsonian treatment with levodopa. J Neurol Neurosurg Psychiatry 55(12):1210

    PubMed  PubMed Central  Google Scholar 

  61. Pourmirbabaei S, Dolatshahi M, Rahmani F (2019) Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur J Pharmacol 855:149–159

    CAS  PubMed  Google Scholar 

  62. Cusimano G, Capriani C, Bonifati V, Meco G (1991) Hypothalamo-pituitary function and dopamine dependence in untreated parkinsonian patients. Acta Neurol Scand 83(3):145–150

    CAS  PubMed  Google Scholar 

  63. Polleri A, Carolei A, Rolandi E, Masturzo P, Meco G, Agnoli A (1977) Changes in pituitary hormones serum levels in bromocryptine-treated parkinsonian patients. Neuropsychobiology 3(1):42–48

    CAS  PubMed  Google Scholar 

  64. Chen SF, Yang YC, Hsu CY, Shen YC (2020) Risk of Parkinson's disease in patients with hypothyroidism: a nationwide population-based cohort study. Parkinsonism Relat Disord 74:28–32

    PubMed  Google Scholar 

  65. Fernández E, García-Moreno JM, de Pablos MA, Chacón J (2014) May the thyroid gland and thyroperoxidase participate in nitrosylation of serum proteins and sporadic Parkinson's disease? Antioxidants Redox Signal 21(15):2143–2148

    Google Scholar 

  66. Tandeter H, Levy A, Gutman G, Shvartzman P (2001) Subclinical thyroid disease in patients with Parkinson's disease. Arch Gerontol Geriatr 33(3):295–300

    CAS  PubMed  Google Scholar 

  67. Munhoz RP, Teive HA, Troiano AR, Hauck PR, Herdoiza Leiva MH, Graff H et al (2004) Parkinson's disease and thyroid dysfunction. Parkinsonism Relat Disord 10(6):381–383

    PubMed  Google Scholar 

  68. da Cunha ME, dos Santos PR, Goes TC, de Carvalho VCB, Teixeira-Silva F, Stevens HE et al (2019) Effects of a rat model of gestational hypothyroidism on forebrain dopaminergic, gabaergic, and serotonergic systems and related behaviors. Behav Brain Res 366:77–87

    Google Scholar 

  69. Chaker L, Bianco AC, Jonklaas J, Peeters RP (2017) Hypothyroidism. Lancet (Lond Engl) 390(10101):1550–1562

    CAS  Google Scholar 

  70. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson's disease. Front Neuroanat 9:91

    PubMed  PubMed Central  Google Scholar 

  71. Mancini A, Di Segni C, Raimondo S, Olivieri G, Silvestrini A, Meucci E et al (2016) Thyroid hormones, oxidative stress, and inflammation. Mediat Inflamm 2016:6757154

    Google Scholar 

  72. Chakrabarti SK, Ghosh S, Banerjee S, Mukherjee S, Chowdhury S (2016) Oxidative stress in hypothyroid patients and the role of antioxidant supplementation. Indian J Endocrinol Metab 20(5):674–678

    PubMed  PubMed Central  Google Scholar 

  73. Petrovic N, Cvijic G, Davidović V (2003) Thyroxine and tri-iodothyronine differently affect uncoupling protein-1 content and antioxidant enzyme activities in rat interscapular brown adipose tissue. J Endocrinol 176:31–38

    CAS  PubMed  Google Scholar 

  74. Venditti P, Balestrieri M, Di Meo S, Leo T (1997) Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J Endocrinol 155:151–157

    CAS  PubMed  Google Scholar 

  75. Sanyal D, Raychaudhuri M (2016) Hypothyroidism and obesity: an intriguing link. Indian J Endocrinol Metab 20(4):554–557

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Longhi S, Radetti G (2013) Thyroid function and obesity. J Clin Res Pediatr Endocrinol 5(Suppl 1):40–44

    PubMed  PubMed Central  Google Scholar 

  77. Martin-Jimenez CA, Gaitan-Vaca DM, Echeverria V, Gonzalez J, Barreto GE (2017) Relationship between obesity, Alzheimer's disease, and Parkinson's disease: an astrocentric view. Mol Neurobiol 54(9):7096–7115

    CAS  PubMed  Google Scholar 

  78. Mohammadi S, Dolatshahi M, Zare-Shahabadi A, Rahmani F (2019) Untangling narcolepsy and diabetes: pathomechanisms with eyes on therapeutic options. Brain Res 1718:212–222

    CAS  PubMed  Google Scholar 

  79. Mazon JN, de Mello AH, Ferreira GK, Rezin GT (2017) The impact of obesity on neurodegenerative diseases. Life Sci 182:22–28

    CAS  PubMed  Google Scholar 

  80. Hage M, Zantout MS, Azar ST (2011) Thyroid disorders and diabetes mellitus. J Thyroid Res 2011:439463

    PubMed  PubMed Central  Google Scholar 

  81. Hu G, Jousilahti P, Bidel S, Antikainen R, Tuomilehto J (2007) Type 2 diabetes and the risk of Parkinson's disease. Diabetes Care 30(4):842

    PubMed  Google Scholar 

  82. Pagano G, Polychronis S, Wilson H, Giordano B, Ferrara N, Niccolini F et al (2018) Diabetes mellitus and Parkinson disease. Neurology 90(19):e1654–e1662

    PubMed  Google Scholar 

  83. Galvagnion C (2017) The role of lipids interacting with alpha-synuclein in the pathogenesis of Parkinson's disease. J Parkinson's Dis 7(3):433–450

    CAS  Google Scholar 

  84. Doria M, Maugest L, Moreau T, Lizard G, Vejux A (2016) Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson's disease. Free Radic Biol Med 101:393–400

    CAS  PubMed  Google Scholar 

  85. Bykov K, Yoshida K, Weisskopf MG, Gagne JJ (2017) Confounding of the association between statins and Parkinson disease: systematic review and meta-analysis. Pharmacoepidemiol Drug Saf 26(3):294–300

    CAS  PubMed  Google Scholar 

  86. Rahmani F, Aarabi MH (2017) Does apolipoprotein A1 predict microstructural changes in subgenual cingulum in early Parkinson? J Neurol 264(4):684–693

    CAS  PubMed  Google Scholar 

  87. Vitali C, Wellington CL, Calabresi L (2014) HDL and cholesterol handling in the brain. Cardiovasc Res 103(3):405–413

    CAS  PubMed  Google Scholar 

  88. Krausz Y, Freedman N, Lester H, Newman JP, Barkai G, Bocher M et al (2004) Regional cerebral blood flow in patients with mild hypothyroidism. J Nucl Med 45(10):1712–1715

    PubMed  Google Scholar 

  89. Utku U, Gokce M, Ozkaya M (2011) Changes in cerebral blood flow velocity in patients with hypothyroidism. Eur J Endocrinol 165(3):465–468

    CAS  PubMed  Google Scholar 

  90. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96(1):17–42

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hong CT, Huang YH, Liu HY, Chiou HY, Chan L, Chien LN (2016) Newly diagnosed anemia increases risk of Parkinson's disease: a population-based cohort study. Sci Rep 6:29651

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Santiago JA, Bottero V, Potashkin JA (2017) Biological and clinical implications of comorbidities in Parkinson's disease. Front Aging Neurosci 9:394

    PubMed  PubMed Central  Google Scholar 

  93. Visanji NP, Collingwood JF, Finnegan ME, Tandon A, House E, Hazrati LN (2013) Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson's disease and multiple system atrophy. J Parkinson's Dis 3(4):523–537

    CAS  Google Scholar 

  94. Mostile G, Cicero CE, Giuliano L, Zappia M, Nicoletti A (2017) Iron and Parkinson's disease: a systematic review and meta-analysis. Mol Med Rep 15(5):3383–3389

    CAS  PubMed  Google Scholar 

  95. Defazio G, Esposito M, Abbruzzese G, Scaglione CL, Fabbrini G, Ferrazzano G et al (2017) The Italian Dystonia Registry: rationale, design and preliminary findings. Neurol Sci 38(5):819–825

    PubMed  Google Scholar 

  96. Caradoc-Davies T (1986) Resolution of dyskinesia and the" on-off" phenomenon in thyrotoxic patients with Parkinson's disease after antithyroid treatment. Br Med J (Clin Res Ed) 293(6538):38

    CAS  Google Scholar 

  97. Kim HT, Edwards MJ, Narsimhan RL, Bhatia KP (2005) Hyperthyroidism exaggerating parkinsonian tremor: a clinical lesson. Parkinsonism Relat Disord 11(5):331–332

    PubMed  Google Scholar 

  98. Davies J, Morrish P, Scanlon M (2001) Graves’ disease presenting as hemiparkinsonism. J Endocrinol Investig 24(3):188–189

    CAS  Google Scholar 

  99. Venditti P, Di Stefano L, Di Meo S (2013) Vitamin E management of oxidative damage-linked dysfunctions of hyperthyroid tissues. Cell Mol Life Sci 70(17):3125–3144

    CAS  PubMed  Google Scholar 

  100. Baizabal-Carvallo JF, Jankovic J (2018) Autoimmune and paraneoplastic movement disorders: an update. J Neurol Sci 385:175–184

    CAS  PubMed  Google Scholar 

  101. Zhou JY, Xu B, Lopes J, Blamoun J, Li L (2017) Hashimoto encephalopathy: literature review. Acta Neurol Scand 135(3):285–290

    CAS  PubMed  Google Scholar 

  102. Dong YH, Fu DG (2014) Autoimmune thyroid disease: mechanism, genetics and current knowledge. Eur Rev Med Pharmacol Sci 18(23):3611–3618

    CAS  PubMed  Google Scholar 

  103. Otsuka J, Hida A, Ogyu K, Minamimoto R, Takeuchi S (2017) Improved 123I-Ioflupane binding after immunotherapy in anti-NAE antibody-positive hashimoto encephalopathy that clinically mimicked multiple system atrophy. Clin Nucl Med 42(8):e390–e391

    PubMed  Google Scholar 

  104. Barbas H, Saha S, Rempel-Clower N, Ghashghaei T (2003) Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 4:25

    PubMed  PubMed Central  Google Scholar 

  105. Honorat JA, McKeon A (2017) Autoimmune movement disorders: a clinical and laboratory approach. Curr Neurol Neurosci Rep 17(1):4

    PubMed  Google Scholar 

  106. Jankovic J (2018) Immunologic treatment of Parkinson's disease. Future Med

  107. Miranda M, Bustamante ML, Campero M, Wainstein E, Toche P, Espay AJ et al (2018) Movement disorders in non-encephalopathic Hashimoto's thyroiditis. Parkinsonism Relat Disord 55:141–142

    PubMed  Google Scholar 

  108. Fauzi NAM, Abdullah S, Tan AH, Ramli NM, Tan CY, Lim S-Y (2019) Relapsing encephalopathy with dancing eyes and jerky limbs. Parkinsonism Relat Disord

  109. Waln O, Jankovic J (2015) Paroxysmal movement disorders. Neurol Clin 33(1):137–152

    PubMed  Google Scholar 

  110. Rana AQ, Nadeem A, Yousuf MS, Kachhvi ZM (2013) Late onset of atypical paroxysmal non-kinesigenic dyskinesia with remote history of Graves' disease. J Neurosci Rural Pract 4(4):449–450

    PubMed  PubMed Central  Google Scholar 

  111. Delhasse S, Debove I, Arnold-Kunz G, Ghika JA, Chabwine JN (2019) Erratic movement disorders disclosing Graves' disease and paralleling thyroid function but not autoantibody levels. J Int Med Res

  112. Jansson B, Jankovic J (1985) Low cancer rates among patients with Parkinson's disease. Ann Neurol 17(5):505–509

    CAS  PubMed  Google Scholar 

  113. Peretz C, Gurel R, Rozani V, Gurevich T, El-Ad B, Tsamir J et al (2016) Cancer incidence among Parkinson's disease patients in a 10-yrs time-window around disease onset: a large-scale cohort study. Parkinsonism Relat Disord 28:68–72

    PubMed  Google Scholar 

  114. Cook IJ (2009) Oropharyngeal dysphagia. Gastroenterol Clin N Am 38(3):411–431

    Google Scholar 

  115. Napolitano F, D'Angelo L, de Girolamo P, Avallone L, de Lange P, Usiello A (2018) The Thyroid-target gene Rhes, a novel crossroad for neurological and psychiatric disorders: new insights from animal models. Neuroscience

  116. Haque M, Kendal JK, MacIsaac RM, Demetrick DJ (2016) WSB1: from homeostasis to hypoxia. J Biomed Sci 23(1):61

    PubMed  PubMed Central  Google Scholar 

  117. de Castro WJP, Fonseca TL, Ueta CB, McAninch EA, Abdalla S, Wittmann G et al (2015) Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J Clin Investig 125(2):769–781

    Google Scholar 

  118. Cuadrado A, Garcı́a-Fernández LF, Imai T, Okano H, Muñoz A, (2002) Regulation of tau RNA maturation by thyroid hormone is mediated by the neural RNA-binding protein musashi-1. Mol Cell Neurosci 20(2):198–210

    CAS  PubMed  Google Scholar 

  119. Lambeth JD, Krause K-H, Clark RA (eds) (2008) NOX enzymes as novel targets for drug development. Seminars in immunopathology. Springer, New York

  120. Bandmann O, Davis M, Mrasden C, Wood N (1996) The human homologue of the weaver mouse gene in familial and sporadic Parkinson's disease. Neuroscience 72(4):877–879

    CAS  PubMed  Google Scholar 

  121. Blum M, Weickert C, Carrasco E (1999) The weaver GIRK2 mutation leads to decreased levels of serum thyroid hormone: characterization of the effect on midbrain dopaminergic neuron survival. Exp Neurol 160(2):413–424

    CAS  PubMed  Google Scholar 

  122. Li J-Q, Tan L, Yu J-T (2014) The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener 9(1):47

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Looyenga BD, Furge KA, Dykema KJ, Koeman J, Swiatek PJ, Giordano TJ et al (2011) Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc Natl Acad Sci USA 108(4):1439–1444

    PubMed  PubMed Central  Google Scholar 

  124. Gatto EM, Parisi V, Converso DP, Poderoso JJ, Carreras MC, Martí-Massó JF et al (2013) The LRRK2 G2019S mutation in a series of Argentinean patients with Parkinson's disease: clinical and demographic characteristics. Neurosci Lett 537:1–5

    CAS  PubMed  Google Scholar 

Download references

Funding

This study did not receive any grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rahmani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any study with human participants or animals performed by any of the authors.

Informed consent

For this study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S., Dolatshahi, M. & Rahmani, F. Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors. J Endocrinol Invest 44, 1–13 (2021). https://doi.org/10.1007/s40618-020-01314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01314-5

Keywords

Navigation