Skip to main content

Advertisement

Log in

Harnessing Epicardial Progenitor Cells and Their Derivatives for Rescue and Repair of Cardiac Tissue After Myocardial Infarction

  • Molecular Biotechnology of Adult Stem Cells (G Stein, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Ischemic heart disease and stroke lead to the greatest number of deaths worldwide. Despite decreased time to intervention and improvements in the standard of care, one out of five patients who survive a myocardial infarction (MI) still face long-term chronic heart failure and a 5-year mortality rate of about 50%. Based on their multi-potency for differentiation and paracrine activity, epicardial cells and their derivatives have potential to rescue jeopardized tissue and/or promote cardiac regeneration. Here, we review the diagnosis and treatment of MI, basic epicardial cell biology, and potential treatment strategies designed to harness the reparative properties of epicardial cells.

Recent Findings

During cardiac development, epicardial cells covering the surface of the heart generate migratory progenitor cells that contribute to the coronary vasculature and the interstitial fibroblasts. Epicardial cells also produce paracrine signals required for myocardial expansion and cardiac growth. In adults with myocardial infarction, epicardial cells and their derivatives provide paracrine factors that affect myocardial remodeling and repair. At present, the intrinsic mechanisms and extrinsic signals that regulate epicardial cell fate and paracrine activity in adults remain poorly understood.

Summary

Human diseases that result in heart failure due to negative remodeling or extensive loss of viable cardiac tissue require new, effective treatments. Improved understanding of epicardial cell function(s) and epicardial-mediated secretion of growth factors, cytokines, and hormones during cardiac growth, homeostasis, and injury may lead to new ways to treat patients with myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al. 2017 American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 135:e146-e603.

  2. Lamas GA. Left ventricular hypertrophy in post-myocardial infarction left ventricular remodelling and in hypertension; similarities and contrasts. Eur Heart J. 1993;14(Suppl J):15–21.

    PubMed  Google Scholar 

  3. Litwin SE, Katz SE, Morgan JP, Douglas PS. Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation. 1994;89:345–54.

    Article  CAS  PubMed  Google Scholar 

  4. McCormick RJ, Musch TI, Bergman BC, Thomas DP. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Phys. 1994;266:H354–9.

    CAS  Google Scholar 

  5. Nakamura S, Tohma M. Influence of reperfusion therapy on left ventricular remodeling after acute myocardial infarction. Kokyu Junkan Respiration Circulation. 1991;39:587–93.

    CAS  PubMed  Google Scholar 

  6. Sabbah HN, Sharov VG, Goldstein S. Programmed cell death in the progression of heart failure. Ann Med. 1998;30(Suppl 1):33–8.

    PubMed  Google Scholar 

  7. Bryant JE, Shamhart PE, Luther DJ, Olson ER, Koshy JC, Costic DJ, et al. Cardiac myofibroblast differentiation is attenuated by alpha(3) integrin blockade: potential role in post-MI remodeling. J Mol Cell Cardiol. 2009;46:186–92.

    Article  CAS  PubMed  Google Scholar 

  8. Freed DH, Cunnington RH, Dangerfield AL, Sutton JS, Dixon IM. Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc Res. 2005;65:782–92.

    Article  CAS  PubMed  Google Scholar 

  9. Vasquez C, Mohandas P, Louie KL, Benamer N, Bapat AC, Morley GE. Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circ Res. 2010;107:1011–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts CS, Maclean D, Maroko P, Kloner RA. Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol. 1984;54:407–10.

    Article  CAS  PubMed  Google Scholar 

  11. Yano T, Miura T, Ikeda Y, Matsuda E, Saito K, Miki T, et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc Pathol. 2005;14:241–6.

    Article  CAS  PubMed  Google Scholar 

  12. Möllmann H, Nef HM, Kostin S, von Kalle C, Pilz I, Weber M, et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res. 2006;71:661–71.

    Article  PubMed  CAS  Google Scholar 

  13. Ruiz-Villalba A, Simón AM, Pogontke C, Castillo MI, Abizanda G, Pelacho B, et al. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol. 2015;65:2057–66.

    Article  PubMed  Google Scholar 

  14. Lamas GA, Flaker GC, Mitchell G, Smith SC Jr, Gersh BJ, Wun CC, et al. Effect of infarct artery patency on prognosis after acute myocardial infarction. The Survival and Ventricular Enlargement Investigators. Circulation. 1995;92:1101–9.

    Article  CAS  PubMed  Google Scholar 

  15. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327:669–77.

    Article  CAS  PubMed  Google Scholar 

  16. Rutherford JD, Pfeffer MA, Moye LA, Davis BR, Flaker GC, Kowey PR, et al. Effects of captopril on ischemic events after myocardial infarction. Results of the Survival and Ventricular Enlargement trial. SAVE Investigators. Circulation. 1994;90:1731–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gittenberger-de Groot AC, Vrancken Peeters MP, Bergwerff M, Mentink MM, Poelmann RE. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000;87:969–71.

    Article  CAS  PubMed  Google Scholar 

  18. Pennisi DJ, Ballard VL, Mikawa T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn. 2003;228:161–72.

    Article  CAS  PubMed  Google Scholar 

  19. Zamora M, Manner J, Ruiz-Lozano P. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci U S A. 2007;104:18109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guadix JA, Ruiz-Villalba A, Lettice L, Velecela V, Munoz-Chapuli R, Hastie ND, et al. Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development. 2011;138:1093–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh A, Ramesh S, Cibi DM, Yun LS, Li J, Li L, et al. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep. 2016;15:1384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trembley MA, Velasquez LS, de Mesy Bentley KL, Small EM. Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development. 2015;142:21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sengbusch JK, He W, Pinco KA, Yang JT. Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol. 2002;157:873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diman NY, Brooks G, Kruithof BP, Elemento O, Seidman JG, Seidman CE, et al. Tbx5 is required for avian and mammalian epicardial formation and coronary vasculogenesis. Circ Res. 2014;115:834–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu SP, Dong XR, Regan JN, Su C, Majesky MW. Tbx18 regulates development of the epicardium and coronary vessels. Dev Biol. 2013;383:307–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Watt AJ, Battle MA, Li J, Duncan SA. GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci U S A. 2004;101:12573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Perez-Pomares JM, et al. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011;108:824–36.

    Article  PubMed  CAS  Google Scholar 

  28. Loomes KM, Taichman DB, Glover CL, Williams PT, Markowitz JE, Piccoli DA, et al. Characterization of Notch receptor expression in the developing mammalian heart and liver. Am J Med Genet. 2002;112:181–9.

    Article  PubMed  Google Scholar 

  29. Smart N, Riley PR. The epicardium as a candidate for heart regeneration. Futur Cardiol. 2012;8:53–69.

    Article  CAS  Google Scholar 

  30. • Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017;127:899–911. This paper demonstrates a previously unappreciated role for epicardial cells and paracrine activity in directing immune cell responses after MI

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lavine KJ, Ornitz DM. Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet. 2008;24:33–40.

    Article  CAS  PubMed  Google Scholar 

  32. Lavine KJ, Yu K, White AC, Zhang X, Smith C, Partanen J, et al. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005;8:85–95.

    Article  CAS  PubMed  Google Scholar 

  33. Vega-Hernandez M, Kovacs A, De Langhe S, Ornitz DM. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development. 2011;138:3331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, et al. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011;138:1795–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gittenberger-de Groot AC, Winter EM, Poelmann RE. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med. 2010;14:1056–60.

    PubMed  Google Scholar 

  36. Masters M, Riley PR. The epicardium signals the way towards heart regeneration. Stem Cell Res. 2014;13:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smart N, Dube KN, Riley PR. Epicardial progenitor cells in cardiac regeneration and neovascularisation. Vasc Pharmacol. 2013;58:164–73.

    Article  CAS  Google Scholar 

  38. Zhou B, Honor LB, He H, Ma Q, Oh JH, Butterfield C, et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011;121:1894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rudat C, Kispert A. Wt1 and epicardial fate mapping. Circ Res. 2012;111:165–9.

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez-Rosa JM, Peralta M, Mercader N. Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol. 2012;370:173–86.

    Article  CAS  PubMed  Google Scholar 

  41. Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174:221–32.

    Article  CAS  PubMed  Google Scholar 

  42. van Tuyn J, Atsma DE, Winter EM, van der Velde-van Dijke I, Pijnappels DA, Bax NA, et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells. 2007;25:271–8.

    Article  PubMed  CAS  Google Scholar 

  43. Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol. 2002;46:1005–13.

    CAS  PubMed  Google Scholar 

  44. • Cano E, Carmona R, Ruiz-Villalba A, Rojas A, Chau YY, Wagner KD, et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc Natl Acad Sci U S A. 2016;113:656–61. This paper illustrates the contribution of proepicardial-derived progenitors to endothelial cells

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008;454:104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Perez Pomares JM, Weesie F, et al. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol. 2006;295:507–22.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou B, Honor LB, Ma Q, Oh JH, Lin RZ, Melero-Martin JM, et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol. 2012;52:43–7.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. •• Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, et al. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. Proc Natl Acad Sci U S A. 2015;112:2070–5. This paper demonstrates adipogenic differentiation (EMT) of epicardial cells and their contribution to epicardial adipose tissue, an important marker and determinant of human cardiovascular health

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11:363–71.

    Article  CAS  PubMed  Google Scholar 

  51. Prockop DJ, Gregory CA, Spees JL. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11917–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112:3543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1:661–73.

    Article  CAS  PubMed  Google Scholar 

  54. Lie-Venema H, van den Akker NM, Bax NA, Winter EM, Maas S, Kekarainen T, et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci World J. 2007;7:1777–98.

    Article  CAS  Google Scholar 

  55. Winter EM, Gittenberger-de Groot AC. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007;64:692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winter EM, Grauss RW, Hogers B, van Tuyn J, van der Geest R, Lie-Venema H, et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007;116:917–27.

    Article  CAS  PubMed  Google Scholar 

  57. Anthony DF, Shiels PG. Exploiting paracrine mechanisms of tissue regeneration to repair damaged organs. Transplant Res. 2013;2:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shimada IS, Spees JL. Stem and progenitor cells for neurological repair: minor issues, major hurdles, and exciting opportunities for paracrine-based therapeutics. J Cell Biochem. 2011;112:374–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016;7:125.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977;91:335–44.

    Article  CAS  PubMed  Google Scholar 

  61. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208:421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9:11–21.

    Article  CAS  PubMed  Google Scholar 

  63. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25:2896–902.

    Article  PubMed  Google Scholar 

  64. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004;363:751–6.

    Article  CAS  PubMed  Google Scholar 

  66. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    Article  Google Scholar 

  67. Da Silva JS, Hare JM. Cell-based therapies for myocardial repair: emerging role for bone marrow-derived mesenchymal stem cells (MSCs) in the treatment of the chronically injured heart. Methods Mol Biol. 2013;1037:145–63.

    Article  PubMed  CAS  Google Scholar 

  68. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;116:1413–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Suncion VY, Schulman IH, Hare JM. Concise review: the role of clinical trials in deciphering mechanisms of action of cardiac cell-based therapy. Stem Cells Transl Med. 2012;1:29–35.

    Article  CAS  PubMed  Google Scholar 

  70. Iso Y, Spees JL, Bakondi B, Serrano C, Pochampally R, Song Y-H, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in immunodeficient mice without long-term engraftment. Biochem Biophys Res Commun. 2007;354:700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A. 2007;104:1643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dai W, Hale SL, Kloner RA. Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats. Regen Med. 2007;2:63–8.

    Article  PubMed  Google Scholar 

  73. Haider H, Jiang S, Idris NM, Ashraf M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res. 2008;103:1300–8.

    Article  CAS  PubMed  Google Scholar 

  74. D'Souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, et al. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med. 2015;13:186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bochmann L, Sarathchandra P, Mori F, Lara-Pezzi E, Lazzaro D, Rosenthal N. Revealing new mouse epicardial cell markers through transcriptomics. PLoS One. 2010;5:e11429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bollini S, Vieira JM, Howard S, Dube KN, Balmer GM, Smart N, et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev. 2014;23:1719–30.

    Article  CAS  PubMed  Google Scholar 

  77. • Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X, Tan W, et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science. 2012;338:1599–603. This work provides key information in regard to genetic regulation of epicardial cells and highlights the roles of epicardial cells in cardiac repair following injury

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lui KO, Zangi L, Chien KR. Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Res. 2014;13:693–704.

    Article  CAS  PubMed  Google Scholar 

  79. Rao KS, Aronshtam A, McElory-Yaggy KL, Bakondi B, Van Buren P, Sobel BE, et al. Human epicardial cell-conditioned medium contains HGF/IgG complexes that phosphorylate RYK and protect against vascular injury. Cardiovasc Res. 2015;107:277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. •• Wei K, Serpooshan V, Hurtado C, Diez-Cuñado M, Zhao M, Maruyama S, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525:479–85. This work nicely demonstrates the paradigm of identifying critical paracrine factors produced by epicardial cells and harnessing them to treat MI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clunie-O'Connor C, Smits AM, Antoniades C, Russell AJ, Yellon DM, Goumans MJ, et al. The derivation of primary human epicardium-derived cells. Curr Protoc Stem Cell Biol. 2015;35:1–12.

    Google Scholar 

  82. Moerkamp AT, Lodder K, van Herwaarden T, Dronkers E, Dingenouts CK, Tengström FC, et al. Human fetal and adult epicardial-derived cells: a novel model to study their activation. Stem Cell Res Ther. 2016;7:174.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  84. Ladd AN, Yatskievych TA, Antin PB. Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Dev Biol. 1998;204:407–19.

    Article  CAS  PubMed  Google Scholar 

  85. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21:1345–57.

    Article  CAS  PubMed  Google Scholar 

  86. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007;50:1884–93.

    Article  PubMed  Google Scholar 

  87. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489:322–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol. 2005;167:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation. 2005;112:I166–72.

    PubMed  Google Scholar 

  90. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  91. Pasha Z, Haider H, Ashraf M. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells. PLoS One. 2011;6:e23667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  93. Dai B, Huang W, Xu M, Millard RW, Gao MH, Hammond HK, et al. Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent stem cell engraftment and angiomyogenesis for improvement of left ventricular function. J Am Coll Cardiol. 2011;58:2118–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mauritz C, Martens A, Rojas SV, Schnick T, Rathert C, Schecker N, et al. Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J. 2011;32:2634–41.

    Article  CAS  PubMed  Google Scholar 

  95. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407–12.

    Article  CAS  PubMed  Google Scholar 

  96. Lalit PA, Hei DJ, Raval AN, Kamp TJ. Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ Res. 2014;114:1328–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Witty AD, Mihic A, Tam RY, Fisher SA, Mikryukov A, Shoichet MS, et al. Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol. 2014;32:1026–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bao X, Lian X, Hacker TA, Schmuck EG, Qian T, Bhute VJ, et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat Biomed Eng. 2016;1

  99. • Iyer D, Gambardella L, Bernard WG, Serrano F, Mascetti VL, Pedersen RA, et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development. 2015;142:1528–41. This works describes the generation of epicardial cells for multiple potential applications and for understanding cardiac disease

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao J, Cao H, Tian L, Huo W, Zhai K, Wang P, et al. Efficient differentiation of TBX18+/WT1+ epicardial-like cells from human pluripotent stem cells using small molecular compounds. Stem Cells Dev. 2017;26:528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Abad M, Hashimoto H, Zhou H, Morales MG, Chen B, Bassel-Duby R, et al. Notch inhibition enhances cardiac reprogramming by increasing MEF2C transcriptional activity. Stem Cell Rep. 2017;8:548–60.

    Article  CAS  Google Scholar 

  105. Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Kaneda R, Suzuki T, Kamiya K, et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors 2013; 110:12667–12672.

  106. Mohamed TM, Stone NR, Berry EC, Radzinsky E, Huang Y, Pratt K, et al. Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation. 2017;135:978–95.

    Article  CAS  PubMed  Google Scholar 

  107. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. Micro RNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110:1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jayawardena TM, Finch EA, Zhang L, Zhang H, Hodgkinson CP, Pratt RE, et al. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res. 2015;116:418–24.

    Article  CAS  PubMed  Google Scholar 

  109. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded in part by NIH/NHLBI R01 HL132264 (to J.L.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krithika S. Rao or Jeffrey L. Spees.

Ethics declarations

Conflict of Interest

Krithika S. Rao declares no potential conflict of interest.

Jeffrey L. Spees holds patents relevant to human epicardial cells and is co-founder of Samba BioLogics, Inc.

Human and Animal Rights and Informed Consent

This article contains no studies with human and animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biotechnology of Adult Stem Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.S., Spees, J.L. Harnessing Epicardial Progenitor Cells and Their Derivatives for Rescue and Repair of Cardiac Tissue After Myocardial Infarction. Curr Mol Bio Rep 3, 149–158 (2017). https://doi.org/10.1007/s40610-017-0066-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0066-6

Keywords

Navigation