Skip to main content
Log in

On Dirichlet-integrable solutions of left-definite Hamiltonian systems

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

This paper aims to share a method to handle left-definite Hamiltonian systems and to construct nested-ellipsoids related with the corresponding hermitian forms. We share a lower bound for the number of linearly independent Dirichlet-integrable solutions of the Hamiltonian systems with respect to some nonnegative matrices. Moreover, we share the corresponding Titchmarsh-Weyl functions. At the end of the paper we introduce a limit-point criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H.: Über gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen entwicklungen willkürlicher funktionen. Math. Ann. 68, 220–269 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  2. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Oxford (1946)

  3. Kodaira, K.: On ordinary differential equations of any even order and the corresponding eigenfunction expansions. Am. J. Math. 72, 502–544 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kimura, T., Takahasi, M.: Sur les opérataurs differentiels ordinaires linéaires formellement autoadjoints I. Funkcialaj Ekvacioj. Serio Internacia 7, 35–90 (1965)

    MATH  Google Scholar 

  5. Everitt, W.N.: Singular differential equations I, The even order case. Math. Ann. 149, 170–180 (1963)

    Article  Google Scholar 

  6. Everitt, W.N.: Integrable-square, analytic solutions of odd-order, formally symmetric, ordinary differential equations. Proc. Lond. Math. Soc. (3) 25, 156–182 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pleijel, A.: Some remarks about the limit point and limit circle theory. Ark. för Mat. 7, 543–550 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pleijel, A.: Generalized Weyl circles, Conference on the Theory of Ordinary and Partial Differential Equations, Dundee, Scotland, Springer Lecture Notes, (1974)

  9. Weyl, H.: Über gewöhnliche lineare differentialgleichwgen mit singulären stellen und ihne eigenfunktionen (2. note). Gött. Nachr. 29, 442–467 (1910)

    MATH  Google Scholar 

  10. Brauer, F.: Spectral theory for the differential equation \(Ly=\lambda My\). Can. J. Math. 10, 431–446 (1958)

    Article  Google Scholar 

  11. Bennewitz, C.: Generalization of some statements by Kodaira, Proc. Roy. Soc. Edinb. (A), 71, 113-119 (1972/73)

  12. Karlsson, B.: Generalization of a theorem of Everitt. J. Lond. Math. Soc. (2) 9, 131–141 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Walker, P.: A vector-matrix formulation for formally symmetric ordinary differential equations with applications to solutions of integrable square. J. Lond. Math. Soc (2) 9, 151–159 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Atkinson, F.V.: Discrete and Continuous Boundary Problems. Acad. Press, New York (1964)

    MATH  Google Scholar 

  15. Jakubovič, V.A.: Arguments on the group of symplectic matrices. Mat. Sbornik 55, 255–280 (1961)

    MathSciNet  Google Scholar 

  16. Jakubovič, V.A.: Oscillation properties of the solutions of canonical equations. Mat. Sbornik 56, 3–42 (1962)

    Google Scholar 

  17. Hinton, D.B., Shaw, J.K.: Titchmarsh-Weyl theory for Hamiltonian systems. In: Knowles, I.W., Lewis, R.E. (eds.) Spectral Theory Diff. Op., pp. 219–230. North Holland (1981)

  18. Hinton, D.B., Shaw, J.K.: Hamiltonian systems of limit point or limit circle type with both endpoints singular. J. Diff. Eq. 50, 444–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krall, A.M.: \(M(\lambda )\) theory for singular Hamiltonian systems with one singular point. SIAM J. Math. Anal. 20, 664–700 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hölder, E.: Zur theorie der randwertaufgaben für lineare kamnische systeme, Jahresberichr der Deutschen Mathematiker Vereinigung, 126-128 (1935)

  21. Schöfke, F.W., Schneider, A.: S-hermitesche Rand-Eigenwertprobleme I. Math. Ann. 162, 9–26 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schöfke, F.W., Schneider, A.: S-hermitesche Rand-Eigenwertprobleme II. Math. Ann. 165, 236–260 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schöfke, F.W., Schneider, A.: S-hermitesche Rand-Eigenwertprobleme III. Math. Ann. 177, 67–94 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bennewitz, C.: A generalization of Niessen’s limit-circle criterion. Proc. R. Soc. Edinb. 78A, 81–90 (1977)

    Article  MATH  Google Scholar 

  25. Bennewitz, C.: Spectral theory for hermitean differential systems. In: Knowles, I.W., Lewis, R.T. (eds.) Spectral Theory of Dif. Operators, pp. 61–67. North Holland Publ. Comp. (1981)

  26. Krall, A.M.: Left-definite regular Hamiltonian systems. Math. Nachr. 174, 203–217 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vanhoff, R.: Some remarks on left-definite Hamiltonian systems in the regular case. Math. Nachr. 193, 199–210 (1998)

    Article  MathSciNet  Google Scholar 

  28. Uğurlu, E., Taş, K., Baleanu, D.: Singular left-definite Hamiltonian systems in the Sobolev space. J. Nonlinear Sci. Appl. 10, 4451–4458 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bonanno, G., D’Aguì, G.: A Neumann boundary value problem for the Sturm-Liouville equation. Appl. Math. Comput. 208, 318–327 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Kravchenko, V.V.: A representation for solutions of the Sturm–Liouville equation. Complex Var. Elliptic Equ. 53, 775–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Aydemir, K., Olğar, H., Muhtaroğlu, O., Muhtarov, F.: Differential operator equations with interface conditions in modified direct sum spaces. Filomat 32, 921–931 (2018)

    Article  MathSciNet  Google Scholar 

  32. Krall, A.M.: A limit-point criterion for linear hamiltonian systems. Appl. Anal. 61, 115–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This declaration is not applicable.

Author information

Authors and Affiliations

Authors

Contributions

EU typed the tex and all the authors have read the manuscript.

Corresponding author

Correspondence to Ekin Uğurlu.

Ethics declarations

Conflict of interest

This declaration is not applicable.

Ethical approval

This declaration is not applicable.

Data availability

No datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uğurlu, E., Bairamov, E. On Dirichlet-integrable solutions of left-definite Hamiltonian systems. Bol. Soc. Mat. Mex. 29, 34 (2023). https://doi.org/10.1007/s40590-023-00507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-023-00507-1

Keywords

Mathematics Subject Classification

Navigation