Skip to main content

Advertisement

Log in

Utilizing Microbes to Treat Naturally Occurring Cancer in Veterinary Species

  • Microbial Anti-cancer Therapy and Prevention (PJF Rider, L Sweeny, and KG Kousoulas, Section Editors)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Therapeutics that harness the immune system to exert their effect may be more critically tested in immunocompetent pet animals than mice or other model systems. This is because pet animals share their environment with humans and spontaneously develop complex, heterogeneous cancers that exhibit similar immunosuppressive microenvironment features. Furthermore, owners of companion animals are increasingly seeking more effective therapeutic options for their pets that go beyond traditional chemotherapy. Microbial-based anticancer therapeutics exploit evolutionarily acquired host-pathogen interactions to break host immune tolerance and/or induce tumor cell death. Therefore, this review summarizes recent studies evaluating microbial-based therapeutics for naturally occurring cancers in veterinary species.

Recent Findings

Adenovirus and poxvirus vectors and genetically modified bacteria expressing tumor-associated antigens are the basis of promising therapeutics targeting an array of canine and feline cancers.

Summary

Several well-funded multi-institutional clinical trials are currently underway evaluating microbial-based therapeutics for naturally occurring veterinary cancers. Recent advancements in our ability to monitor immune responses in these species and a growing appreciation for the similarities and differences in host-pathogen interactions between humans and animals will assist in future comparative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Amin SB, Anderson KJ, Boudreau CE, Martinez-Ledesma E, Kocakavuk E, Johnson KC, et al. Comparative molecular life history of spontaneous canine and human gliomas. bioRxiv 673822. https://doi.org/10.1101/673822

  2. Argyle DJ, Nasir L. Telomerase: a potential diagnostic and therapeutic tool in canine oncology. Vet Pathol. 2003;40(1):1–7.

    CAS  PubMed  Google Scholar 

  3. Barber GN. Vesicular stomatitis virus as an oncolytic vector. Viral Immunol. 2004;17(4):516–27.

    CAS  PubMed  Google Scholar 

  4. Bech-Nielsen S, Brodey RS, Fidler IJ, Abt DA, Reif JS. The effect of BCG on in vitro immune reactivity and clinical course in dogs treated surgically for osteosarcoma. Eur J Cancer. 1977;13(1):33–41.

    CAS  PubMed  Google Scholar 

  5. Betton GR, Gorman NT, Owen LN. Cell mediated cytotoxicity in dogs following systemic or local BCG treatment alone or in combination with allogeneic tumour cell lines. Eur J Cancer. 1979;15(5):745–54.

    CAS  PubMed  Google Scholar 

  6. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532(7600):512–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cattaneo R. Paramyxovirus entry and targeted vectors for cancer therapy. PLoS Pathog. 2010;6(6):e1000973.

    PubMed  PubMed Central  Google Scholar 

  8. •• Cejalvo T, Perise-Barrios AJ, Del Portillo I, Laborda E, Rodriguez-Milla MA, Cubillo I, et al. Remission of spontaneous canine tumors after systemic cellular viroimmunotherapy. Cancer Res. 2018;78(17):4891–901 The authors describe systemic administration of oncolytic adenovirus-infected mesenchymal stem cells to dogs with a variety of cancers. This innovative strategy was aimed at avoiding virus neutralization by pre-existing anti-adenovirus antibodies in circulation. Impressive clinical responses in primary and metastatic canine cancers were observed. Pre-existing anti-adenovirus antibodies present due to routine vaccination did not affect response.

    CAS  PubMed  Google Scholar 

  9. Chan WM, McFadden G. Oncolytic poxviruses. Annu Rev Virol. 2014;1(1):119–41.

    PubMed  PubMed Central  Google Scholar 

  10. Chaurasiya S, Chen NG, Fong Y. Oncolytic viruses and immunity. Curr Opin Immunol. 2018;51:83–90.

    CAS  PubMed  Google Scholar 

  11. Chu Z, Gao X, Liu H, Ma J, Wang C, Lu K, et al. Newcastle disease virus selectively infects dividing cells and promotes viral proliferation. Vet Res. 2019;50(1):27.

    PubMed  PubMed Central  Google Scholar 

  12. de Queiroz N, Xia T, Konno H, Barber GN. Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol Cancer Res. 2019;17(4):974–86.

    PubMed  Google Scholar 

  13. de Souza TA, de Campos CB, De Biasi Bassani Goncalves A, Nunes FC, Monteiro LN, de Oliveira Vasconcelos R, et al. Relationship between the inflammatory tumor microenvironment and different histologic types of canine mammary tumors. Res Vet Sci. 2018;119:209–14.

    PubMed  Google Scholar 

  14. Fayyad A, Lapp S, Risha E, Pfankuche VM, Rohn K, Barthel Y, et al. Matrix metalloproteinases expression in spontaneous canine histiocytic sarcomas and its xenograft model. Vet Immunol Immunopathol. 2018;198:54–64.

    CAS  PubMed  Google Scholar 

  15. Feldman EJ, Seiter K, Chiao JW, Halicka HD, Traganos F, Fatora SR, et al. In vitro effects and clinical evaluation of a human chorionic gonadotrophin preparation in acute leukemia. Leukemia. 1998;12(11):1749–55.

    CAS  PubMed  Google Scholar 

  16. Fiola C, Peeters B, Fournier P, Arnold A, Bucur M, Schirrmacher V. Tumor selective replication of Newcastle disease virus: association with defects of tumor cells in antiviral defence. Int J Cancer. 2006;119(2):328–38.

    CAS  PubMed  Google Scholar 

  17. Flickinger JC Jr, Rodeck U, Snook AE. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines (Basel). 2018;6(3):48.

    CAS  PubMed Central  Google Scholar 

  18. • Fritz SE, Henson MS, Greengard E, Winter AL, Stuebner KM, Yoon U, et al. A phase I clinical study to evaluate safety of orally administered, genetically engineered Salmonella enterica serovar Typhimurium for canine osteosarcoma. Vet Med Sci. 2016;2(3):179–90 IL2-expressingSalmonella entericaserovartyphimurium(SalpIL-2) was evaluated in a dose-finding study in dogs with osteosarcoma. Treatments were well tolerated at all doses. Combined with amputation and doxorubicin, SalpIL-2 administration was associated with prolonged median disease-free interval compared to amputation and doxorubicin alone.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ganguly B, Das U, Das AK. Canine transmissible venereal tumour: a review. Vet Comp Oncol. 2016;14(1):1–12.

    CAS  PubMed  Google Scholar 

  20. Gavazza A, Lubas G, Fridman A, Peruzzi D, Impellizeri JA, Luberto L, et al. Safety and efficacy of a genetic vaccine targeting telomerase plus chemotherapy for the therapy of canine B-cell lymphoma. Hum Gene Ther. 2013;24(8):728–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gong J, Mita MM. Activated ras signaling pathways and reovirus oncolysis: an update on the mechanism of preferential reovirus replication in cancer cells. Front Oncol. 2014;4:167.

    PubMed  PubMed Central  Google Scholar 

  22. Gorman NT. Alveolar macrophage cytotoxicity in dogs following intravenous BCG. Eur J Cancer. 1979;15(8):1051–9.

    CAS  PubMed  Google Scholar 

  23. Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 2010;18(7):1275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.

    CAS  PubMed  Google Scholar 

  25. Helfand SC, Modiano JF, Nowell PC. Immunophysiological studies of interleukin-2 and canine lymphocytes. Vet Immunol Immunopathol. 1992;33(1–2):1–16.

    CAS  PubMed  Google Scholar 

  26. Henry CJ, Downing S, Rosenthal RC, Klein MK, Meleo K, Villamil JA, et al. Evaluation of a novel immunomodulator composed of human chorionic gonadotropin and bacillus Calmette-Guerin for treatment of canine mast cell tumors in clinically affected dogs. Am J Vet Res. 2007;68(11):1246–51.

    CAS  PubMed  Google Scholar 

  27. Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017;7:195.

    PubMed  PubMed Central  Google Scholar 

  28. Hummel J, Bienzle D, Morrison A, Cieplak M, Stephenson K, DeLay J, et al. Maraba virus-vectored cancer vaccines represent a safe and novel therapeutic option for cats. Sci Rep. 2017;7(1):15738.

    PubMed  PubMed Central  Google Scholar 

  29. Hwang CC, Umeki S, Kubo M, Hayashi T, Shimoda H, Mochizuki M, et al. Oncolytic reovirus in canine mast cell tumor. PLoS One. 2013;8(9):e73555.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hwang CC, Umeki S, Igase M, Coffey M, Noguchi S, Okuda M, et al. The effects of oncolytic reovirus in canine lymphoma cell lines. Vet Comp Oncol. 2016;14(Suppl 1):61–73.

    CAS  PubMed  Google Scholar 

  31. • Hwang CC, Igase M, Sakurai M, Haraguchi T, Tani K, Itamoto K, et al. Oncolytic reovirus therapy: pilot study in dogs with spontaneously occurring tumours. Vet Comp Oncol. 2018;16(2):229–38 In this study, reovirus was administered intralesionally or intravenously to 19 client-owned dogs with a variety of different naturally occurring cancers. Treatments were generally well tolerated, and a reduction in tumor size was observed in 5 dogs. In combination with additional reports by this group demonstratingin vitroandin vivoactivity of reovirus in canine xenograft murine models, this treatment represents a promising new novel therapeutic in veterinary medicine.

    CAS  PubMed  Google Scholar 

  32. Igase M, Hwang CC, Coffey M, Okuda M, Noguchi S, Mizuno T. The oncolytic effects of reovirus in canine solid tumor cell lines. J Vet Med Sci. 2015;77(5):541–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Igase M, Hwang CC, Kambayashi S, Kubo M, Coffey M, Miyama TS, et al. Oncolytic reovirus synergizes with chemotherapeutic agents to promote cell death in canine mammary gland tumor. Can J Vet Res. 2016;80(1):21–31.

    PubMed  PubMed Central  Google Scholar 

  34. Igase M, Shousu K, Fujiki N, Sakurai M, Bonkobara M, Hwang CC, et al. Anti-tumour activity of oncolytic reovirus against canine histiocytic sarcoma cells. Vet Comp Oncol. 2019;17(2):184–93.

    CAS  PubMed  Google Scholar 

  35. • Ilyinskaya GV, Mukhina EV, Soboleva AV, Matveeva OV, Chumakov PM. Oncolytic Sendai virus therapy of canine mast cell tumors (a pilot study). Front Vet Sci. 2018;5:116 Impressive responses to intralesional injection were reported in canine mast cell tumors in this study.

    PubMed  PubMed Central  Google Scholar 

  36. • Impellizeri JA, Gavazza A, Greissworth E, Crispo A, Montella M, Ciliberto G, et al. Tel-eVax: a genetic vaccine targeting telomerase for treatment of canine lymphoma. J Transl Med. 2018;16(1):349 The authors show efficacy of a 2-hit vaccination strategy utilizing an Ad6 vector expressing dTERT, along with dTERT DNA electroporation, in conjunction with standard-of-care CHOP chemotherapy for canine diffuse large B-cell lymphoma. Anti-dTERT antibody production was detected in treated dogs.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jas D, Soyer C, De Fornel-Thibaud P, Oberli F, Vernes D, Guigal P-M, et al. Adjuvant immunotherapy of feline injection-site sarcomas with the recombinant canarypox virus expressing feline interleukine-2 evaluated in a controlled monocentric clinical trial when used in association with surgery and brachytherapy. Trials Vaccinol. 2015;4:1–8.

    Google Scholar 

  38. Johannes CM. New veterinary oncology therapeutics. American 792 Veterinarian. Jan 15, 2019. Retrieved from: https://www.americanveterinarian.com/journals/amvet/2019/january2019/newveterinary-oncology-therapeutics, Accessed on 9/2/2019.

  39. Jourdier TM, Moste C, Bonnet MC, Delisle F, Tafani JP, Devauchelle P, et al. Local immunotherapy of spontaneous feline fibrosarcomas using recombinant poxviruses expressing interleukin 2 (IL2). Gene Ther. 2003;10(26):2126–32.

    CAS  PubMed  Google Scholar 

  40. Kemp V, Hoeben RC, van den Wollenberg DJ. Exploring reovirus plasticity for improving its use as oncolytic virus. Viruses. 2015;8(1):4.

    PubMed Central  Google Scholar 

  41. King JN. Phase I clinical trial of recombinant oncolytic Newcastle disease virus for intracranial meningioma (unpublished master’s thesis). 2017. Virginia PolytechnicInstitute and State University, Blacksburg, Virginia, USA. Retreived from https://vtechworks.lib.vt.edu/bitstream/handle/10919/86617/King_JN_T_2017.pdf?sequence=1&isAllowed=y.

  42. Kleinerman ES, Gano JB, Johnston DA, Benjamin RS, Jaffe N. Efficacy of liposomal muramyl tripeptide (CGP 19835A) in the treatment of relapsed osteosarcoma. Am J Clin Oncol. 1995;18(2):93–9.

    CAS  PubMed  Google Scholar 

  43. Kurzman ID, Cheng H, MacEwen EG. Effect of liposome-muramyl tripeptide combined with recombinant canine granulocyte colony-stimulating factor on canine monocyte activity. Cancer Biother. 1994;9(2):113–21.

    CAS  PubMed  Google Scholar 

  44. Kurzman ID, MacEwen EG, Rosenthal RC, Fox LE, Keller ET, Helfand SC, et al. Adjuvant therapy for osteosarcoma in dogs: results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clin Cancer Res. 1995;1(12):1595–601.

    CAS  PubMed  Google Scholar 

  45. Kurzman ID, Shi F, Vail DM, MacEwen EG. In vitro and in vivo enhancement of canine pulmonary alveolar macrophage cytotoxic activity against canine osteosarcoma cells. Cancer Biother Radiopharm. 1999;14(2):121–8.

    CAS  PubMed  Google Scholar 

  46. Laborda E, Puig-Saus C, Rodriguez-Garcia A, Moreno R, Cascallo M, Pastor J, et al. A pRb-responsive, RGD-modified, and hyaluronidase-armed canine oncolytic adenovirus for application in veterinary oncology. Mol Ther. 2014;22(5):986–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lascelles BD, Dernell WS, Correa MT, Lafferty M, Devitt CM, Kuntz CA, et al. Improved survival associated with postoperative wound infection in dogs treated with limb-salvage surgery for osteosarcoma. Ann Surg Oncol. 2005;12(12):1073–83.

    PubMed  Google Scholar 

  48. LeBlanc AK, Naik S, Galyon GD, Jenks N, Steele M, Peng KW, et al. Safety studies on intravenous administration of oncolytic recombinant vesicular stomatitis virus in purpose-bred beagle dogs. Hum Gene Ther Clin Dev. 2013;24(4):174–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999;401(6753):517–8.

    CAS  PubMed  Google Scholar 

  50. Li P, Wang J, Chen G, Zhang X, Lin D, Zhou Y, et al. Oncolytic activity of canine distemper virus in canine mammary tubular adenocarcinoma cells. Vet Comp Oncol. 2019;17(2):174–83.

    CAS  PubMed  Google Scholar 

  51. Liptak JM, Dernell WS, Ehrhart N, Lafferty MH, Monteith GJ, Withrow SJ. Cortical allograft and endoprosthesis for limb-sparing surgery in dogs with distal radial osteosarcoma: a prospective clinical comparison of two different limb-sparing techniques. Vet Surg. 2006;35(6):518–33.

    PubMed  Google Scholar 

  52. MacEwen EG, Kurzman ID, Rosenthal RC, Smith BW, Manley PA, Roush JK, et al. Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J Natl Cancer Inst. 1989;81(12):935–8.

    CAS  PubMed  Google Scholar 

  53. MacEwen EG, Kurzman ID, Vail DM, Dubielzig RR, Everlith K, Madewell BR, et al. Adjuvant therapy for melanoma in dogs: results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 1999;5(12):4249–58.

    CAS  PubMed  Google Scholar 

  54. MacNeill AL, Moldenhauer T, Doty R, Mann T. Myxoma virus induces apoptosis in cultured feline carcinoma cells. Res Vet Sci. 2012;93(2):1036–8.

    CAS  PubMed  Google Scholar 

  55. MacNeill AL, Weishaar KM, Seguin B, Powers BE. Safety of an oncolytic myxoma virus in dogs with soft tissue sarcoma. Viruses. 2018;10(8):398.

    PubMed Central  Google Scholar 

  56. Mansour M, Palese P, Zamarin D. Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J Virol. 2011;85(12):6015–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. • Mason NJ, Gnanandarajah JS, Engiles JB, Gray F, Laughlin D, Gaurnier-Hausser A, et al. Immunotherapy with a HER2-targeting Listeria induces HER2-specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma. Clin Cancer Res. 2016;22(17):4380–90 This study evaluated the safety, immunological effects, and efficacy of genetically modified, HER2-targetingL. monocytogenesin pet dogs with naturally occurring HER2-positive osteosarcoma. Treatment was well tolerated, HER2-specific immune responses were induced, and a survival benefit was observed relative to historical controls. Further, multi-institutional studies are underway to build on these findings.

    CAS  PubMed  Google Scholar 

  58. Matveeva OV, Chumakov PM. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev Med Virol. 2018;28(6):e2008.

    PubMed  PubMed Central  Google Scholar 

  59. Mennuni C, Ugel S, Mori F, Cipriani B, Iezzi M, Pannellini T, et al. Preventive vaccination with telomerase controls tumor growth in genetically engineered and carcinogen-induced mouse models of cancer. Cancer Res. 2008;68(23):9865–74.

    CAS  PubMed  Google Scholar 

  60. Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005;23(9):2004–11.

    CAS  PubMed  Google Scholar 

  61. Mukaratirwa S, Chitanga S, Chimatira T, Makuleke C, Sayi ST, Bhebhe E. Combination therapy using intratumoral bacillus Calmette-Guerin (BCG) and vincristine in dogs with transmissible venereal tumours: therapeutic efficacy and histological changes. J S Afr Vet Assoc. 2009;80(2):92–6.

    CAS  PubMed  Google Scholar 

  62. •• Naik S, Galyon GD, Jenks NJ, Steele MB, Miller AC, Allstadt SD, et al. Comparative oncology evaluation of intravenous recombinant oncolytic vesicular stomatitis virus therapy in spontaneous canine cancer. Mol Cancer Ther. 2018;17(1):316–26 In this study, the toxicity and efficacy of a recombinant oncolytic VSV was evaluated in 9 dogs with a variety of different tumors. The two dogs that developed transient ALT elevations were also the two dogs that had the highest virus copy numbers in their PBMCs, and were the only dogs to experience an objective response to treatment.

    PubMed  PubMed Central  Google Scholar 

  63. Nallar SC, Xu DQ, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges. Cytokine. 2017;89:160–72.

    CAS  PubMed  Google Scholar 

  64. NIH. Current open clinical trials: National Institutes of Health- National Cancer Institute. 2019 [Available from: https://ccr.cancer.gov/Comparative-Oncology-Program/pet-owners/trials.

  65. Ogawa C, Liu YJ, Kobayashi KS. Muramyl dipeptide and its derivatives: peptide adjuvant in immunological disorders and cancer therapy. Curr Bioact Compd. 2011;7(3):180–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Olin MR, Pluhar GE, Andersen BM, Shaver R, Waldron NN, Moertel CL. Victory and defeat in the induction of a therapeutic response through vaccine therapy for human and canine brain tumors: a review of the state of the art. Crit Rev Immunol. 2014;34(5):399–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Owen LN, Bostock DE. Effects of intravenous BCG in normal dogs and in dogs with spontaneous osteosarcoma. Eur J Cancer. 1974;10(12):775–80.

    CAS  PubMed  Google Scholar 

  68. Park JS, Withers SS, Modiano JF, Kent MS, Chen M, Luna JI, et al. Canine cancer immunotherapy studies: linking mouse and human. J Immunother Cancer. 2016;4:97.

    PubMed  PubMed Central  Google Scholar 

  69. Peruzzi D, Gavazza A, Mesiti G, Lubas G, Scarselli E, Conforti A, et al. A vaccine targeting telomerase enhances survival of dogs affected by B-cell lymphoma. Mol Ther. 2010;18(8):1559–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pfankuche VM, Spitzbarth I, Lapp S, Ulrich R, Deschl U, Kalkuhl A, et al. Reduced angiogenic gene expression in morbillivirus-triggered oncolysis in a translational model for histiocytic sarcoma. J Cell Mol Med. 2017;21(4):816–30.

    CAS  PubMed  Google Scholar 

  71. Pluhar GE, Grogan PT, Seiler C, Goulart M, Santacruz KS, Carlson C, et al. Anti-tumor immune response correlates with neurological symptoms in a dog with spontaneous astrocytoma treated by gene and vaccine therapy. Vaccine. 2010;28(19):3371–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Porcellato I, Brachelente C, De Paolis L, Menchetti L, Silvestri S, Sforna M, et al. FoxP3 and IDO in canine melanocytic tumors. Vet Pathol. 2019;56(2):189–99.

    CAS  PubMed  Google Scholar 

  73. Puff C, Krudewig C, Imbschweiler I, Baumgartner W, Alldinger S. Influence of persistent canine distemper virus infection on expression of RECK, matrix-metalloproteinases and their inhibitors in a canine macrophage/monocytic tumour cell line (DH82). Vet J. 2009;182(1):100–7.

    CAS  PubMed  Google Scholar 

  74. Rossmeisl JH, Hall-Manning K, Robertson JL, King JN, Davalos RV, Debinski W, et al. Expression and activity of the urokinase plasminogen activator system in canine primary brain tumors. Onco Targets Ther. 2017;10:2077–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Saltzman DA, Heise CP, Hasz DE, Zebede M, Kelly SM, Curtiss R 3rd, et al. Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: a novel anti-tumor agent. Cancer Biother Radiopharm. 1996;11(2):145–53.

    CAS  PubMed  Google Scholar 

  76. Sanchez D, Pelayo R, Medina LA, Vadillo E, Sanchez R, Nunez L, et al. Sarmiento-Silva RE.Newcastle disease virus: potential therapeutic application for human and canine lymphoma. Viruses. 2015;8(1):3.

    PubMed Central  Google Scholar 

  77. Sanchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic viruses for canine cancer treatment. Cancers (Basel). 2018;10(11):404.

    PubMed Central  Google Scholar 

  78. Shepard B.. Brain tumor therapy is going to the dogs: University of Alabama at Birmingham. 2018 [updated April 12, 2018. Available from: https://www.uab.edu/news/health/item/9334-brain-tumor-therapy-is-going-to-the-dogs.

  79. Shoji K, Yoneda M, Fujiyuki T, Amagai Y, Tanaka A, Matsuda A, et al. Development of new therapy for canine mammary cancer with recombinant measles virus. Mol Ther Oncolytics. 2016;3:15022.

    PubMed  PubMed Central  Google Scholar 

  80. Smith BW, Kurzman ID, Schultz KT, Czuprynski CJ, MacEwen EG. Muramyl peptides augment the in vitro and in vivo cytostatic activity of canine plastic-adherent mononuclear cells against canine osteosarcoma cells. Cancer Biother. 1993;8(2):137–44.

    CAS  PubMed  Google Scholar 

  81. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013;2:e00458.

    PubMed  PubMed Central  Google Scholar 

  82. Suter SE, Chein MB, von Messling V, Yip B, Cattaneo R, Vernau W, et al. In vitro canine distemper virus infection of canine lymphoid cells: a prelude to oncolytic therapy for lymphoma. Clin Cancer Res. 2005;11(4):1579–87.

    CAS  PubMed  Google Scholar 

  83. Tizard IR. Innate immunity: macrophages and recovery from inflammation. Veterinary immunology. 9th ed. St. Louis, Missouri:Elsevier; 2013:41–51.

  84. Tizard IR. The major histocompatibility complex. Veterinary immunology. 9th ed. St. Louis, Missouri: Elsevier; 2013:102–112.

  85. Urbasic AS, Hynes S, Somrak A, Contakos S, Rahman MM, Liu J, et al. Oncolysis of canine tumor cells by myxoma virus lacking the serp2 gene. Am J Vet Res. 2012;73(8):1252–61.

    CAS  PubMed  Google Scholar 

  86. Vail DM, MacEwen EG, Kurzman ID, Dubielzig RR, Helfand SC, Kisseberth WC, et al. Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: a randomized multi-institutional clinical trial. Clin Cancer Res. 1995;1(10):1165–70.

    CAS  PubMed  Google Scholar 

  87. Washburn B, Weigand MA, Grosse-Wilde A, Janke M, Stahl H, Rieser E, et al. TNF-related apoptosis-inducing ligand mediates tumoricidal activity of human monocytes stimulated by Newcastle disease virus. J Immunol. 2003;170(4):1814–21.

    CAS  PubMed  Google Scholar 

  88. Wilson-Robles H, Budke CM, Miller T, Dervisis N, Novosad A, Wright Z, et al. Geographical differences in survival of dogs with non-Hodgkin lymphoma treated with a CHOP based chemotherapy protocol. Vet Comp Oncol. 2017;15(4):1564–71.

    CAS  PubMed  Google Scholar 

  89. Withers SS, Skorupski KA, York D, Choi JW, Woolard KD, Laufer-Amorim R, et al. Association of macrophage and lymphocyte infiltration with outcome in canine osteosarcoma. Vet Comp Oncol. 2019;17(1):49–60.

    CAS  PubMed  Google Scholar 

  90. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273–86.

    PubMed  Google Scholar 

  91. Wood LM, Paterson Y. Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect Microbiol. 2014;4:51.

    PubMed  PubMed Central  Google Scholar 

  92. Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016;14(2):282–97.

    CAS  PubMed  Google Scholar 

  93. Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral Oncolysis. Cancer Res. 2016;76(22):6747–59.

    CAS  PubMed  Google Scholar 

  94. Yazawa M, Okuda M, Kanaya N, Hong SH, Takahashi T, Ohashi E, et al. Molecular cloning of the canine telomerase reverse transcriptase gene and its expression in neoplastic and non-neoplastic cells. Am J Vet Res. 2003;64(11):1395–400.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sita S. Withers.

Ethics declarations

Conflict of Interest

Drs. Withers, Sparger, and Boudreaux certify that they have no affiliations with or involvement in any organization or entity with any financial or nonfinancial interest in the subject matter or materials discussed in this manuscript. Dr. Mason is a named inventor on the recombinant HER2/neu expressing Listeria-based vaccine for use in dogs with osteosarcoma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microbial Anti-cancer Therapy and Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Withers, S.S., Sparger, E.E., Boudreaux, B. et al. Utilizing Microbes to Treat Naturally Occurring Cancer in Veterinary Species. Curr Clin Micro Rpt 6, 200–212 (2019). https://doi.org/10.1007/s40588-019-00130-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-019-00130-7

Keywords

Navigation