Skip to main content

Advertisement

Log in

Differential eye movement features between Alzheimer’s disease patients with and without depressive symptoms

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Accurately diagnosing depressive symptoms in Alzheimer’s disease (AD) patients is often challenging. Eye movement parameters have been demonstrated as biomarkers for assessing cognition and psychological conditions.

Aim

To investigate the differences in eye movement between AD patients with and without depressive symptoms.

Methods

Eye movement data of 65 AD patients were compared between the depressed AD (D-AD) and non-depressed AD (nD-AD) groups. Logistic regression analysis was employed to identify diagnostic biomarkers and the ROC curve was plotted. The correlation between eye movement and HAMD-17 scores was assessed by partial correlation analysis.

Results

The D-AD patients showed longer saccade latency and faster average/peak saccade velocities in the overlap prosaccade test, longer average reaction time and faster average saccade velocity in the gap prosaccade test, longer start-up durations, slower pursuit velocity, more offsets, and larger total offset degrees in the smooth pursuit test, and poorer fixation stability in both the central and lateral fixation tests compared to nD-AD patients. The start-up duration in the smooth pursuit test and the number of offsets in the central fixation test were identified as the diagnostic eye movement parameters for D-AD patients with the area under the ROC curves of 0.8011. Partial correlation analysis revealed that the start-up duration and pursuit velocity in the smooth pursuit test and the total offset degrees in the lateral fixation test were correlated with HAMD-17 scores in D-AD patients.

Discussion and conclusions

Eye movement differences may help to differentiate D-AD patients from nD-AD patients in a non-invasive and cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Botto R, Callai N, Cermelli A et al (2022) Anxiety and depression in Alzheimer’s disease: a systematic review of pathogenetic mechanisms and relation to cognitive decline. Neurol Sci 43:4107–4124. https://doi.org/10.1007/s10072-022-06068-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee HB, Lyketsos CG (2003) Depression in Alzheimer’s disease: heterogeneity and related issues. Biol Psychiatry 54:353–362. https://doi.org/10.1016/s0006-3223(03)00543-2

    Article  CAS  PubMed  Google Scholar 

  3. Teng E, Ringman JM, Ross LK et al (2008) Diagnosing depression in Alzheimer disease with the national institute of mental health provisional criteria. Am J Geriatr Psychiatry 16:469–477. https://doi.org/10.1097/JGP.0b013e318165dbae

    Article  PubMed  PubMed Central  Google Scholar 

  4. Novais F, Starkstein S (2015) Phenomenology of Depression in Alzheimer’s Disease. J Alzheimers Dis 47:845–855. https://doi.org/10.3233/JAD-148004

    Article  PubMed  Google Scholar 

  5. Starkstein SE, Mizrahi R, Power BD (2008) Depression in Alzheimer’s disease: phenomenology, clinical correlates and treatment. Int Rev Psychiatry 20:382–388. https://doi.org/10.1080/09540260802094480

    Article  PubMed  Google Scholar 

  6. Heun R, Kockler M, Ptok U (2003) Lifetime symptoms of depression in Alzheimer’s disease. Eur Psychiatry 18:63–69. https://doi.org/10.1016/s0924-9338(03)00003-8

    Article  PubMed  Google Scholar 

  7. Dowrick C, Frances A (2013) Medicalising unhappiness: new classification of depression risks more patients being put on drug treatment from which they will not benefit. BMJ 347:f7140. https://doi.org/10.1136/bmj.f7140

    Article  PubMed  Google Scholar 

  8. Terao Y, Fukuda H, Hikosaka O (2017) What do eye movements tell us about patients with neurological disorders?—An introduction to saccade recording in the clinical setting. Proc Jpn Acad Ser B Phys Biol Sci 93:772–801. https://doi.org/10.2183/pjab.93.049

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anderson TJ, MacAskill MR (2013) Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol 9:74–85. https://doi.org/10.1038/nrneurol.2012.273

    Article  PubMed  Google Scholar 

  10. Zhang D, Liu X, Xu L et al (2022) Effective differentiation between depressed patients and controls using discriminative eye movement features. J Affect Disord 307:237–243. https://doi.org/10.1016/j.jad.2022.03.077

    Article  PubMed  Google Scholar 

  11. Coors A, Imtiaz MA, Boenniger MM et al (2022) Associations of genetic liability for Alzheimer’s disease with cognition and eye movements in a large, population-based cohort study. Transl Psychiatry 12:337. https://doi.org/10.1038/s41398-022-02093-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  13. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  14. Spering CC, Hobson V, Lucas JA et al (2012) Diagnostic accuracy of the MMSE in detecting probable and possible Alzheimer’s disease in ethnically diverse highly educated individuals: an analysis of the NACC database. J Gerontol A Biol Sci Med Sci 67:890–896. https://doi.org/10.1093/gerona/gls006

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356. https://doi.org/10.2214/ajr.149.2.351

    Article  CAS  PubMed  Google Scholar 

  16. Moroney JT, Bagiella E, Hachinski VC et al (1997) Misclassification of dementia subtype using the Hachinski Ischemic Score: results of a meta-analysis of patients with pathologically verified dementias. Ann N Y Acad Sci 826:490–492. https://doi.org/10.1111/j.1749-6632.1997.tb48510.x

    Article  CAS  PubMed  Google Scholar 

  17. Biedermann F, Fleischhacker WW (2016) Psychotic disorders in DSM-5 and ICD-11. CNS Spectr 21:349–354. https://doi.org/10.1017/s1092852916000316

    Article  PubMed  Google Scholar 

  18. Zimmerman M, Martinez JH, Young D et al (2013) Severity classification on the Hamilton Depression Rating Scale. J Affect Disord 150:384–388. https://doi.org/10.1016/j.jad.2013.04.028

    Article  PubMed  Google Scholar 

  19. Cummings J (2020) The Neuropsychiatric Inventory: Development and Applications. J Geriatr Psychiatry Neurol 33:73–84. https://doi.org/10.1177/0891988719882102

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schneider LS, Tariot PN, Lyketsos CG et al (2001) National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE): Alzheimer disease trial methodology. Am J Geriatr Psychiatry 9:346–360

    Article  CAS  PubMed  Google Scholar 

  21. Allegri RF, Sarasola D, Serrano CM et al (2006) Neuropsychiatric symptoms as a predictor of caregiver burden in Alzheimer’s disease. Neuropsychiatr Dis Treat 2:105–110

    PubMed  PubMed Central  Google Scholar 

  22. Berger T, Lee H, Young AH et al (2020) Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol Med 26:803–818. https://doi.org/10.1016/j.molmed.2020.03.010

    Article  PubMed  Google Scholar 

  23. Zufferey V, Gunten AV, Kherif F (2020) Interactions between personality, depression, anxiety and cognition to understand early stage of Alzheimer’s disease. Curr Top Med Chem 20:782–791. https://doi.org/10.2174/1568026620666200211110545

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Xu Y, Xia M et al (2016) Eye movement indices in the study of depressive disorder. Shanghai Arch Psychiatry 28:326–334. https://doi.org/10.11919/j.issn.1002-0829.216078

    Article  CAS  PubMed  Google Scholar 

  25. Carvalho N, Noiret N, Vandel P et al (2014) Saccadic eye movements in depressed elderly patients. PLoS ONE 9:e105355. https://doi.org/10.1371/journal.pone.0105355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coiner B, Pan H, Bennett ML et al (2019) Functional neuroanatomy of the human eye movement network: a review and atlas. Brain Struct Funct 224:2603–2617. https://doi.org/10.1007/s00429-019-01932-7

    Article  CAS  PubMed  Google Scholar 

  27. Pierrot-Deseilligny C, Muri RM, Nyffeler T et al (2005) The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Ann NY Acad Sci 1039:239–251. https://doi.org/10.1196/annals.1325.023

    Article  PubMed  Google Scholar 

  28. Scudder CA, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142:439–462. https://doi.org/10.1007/s00221-001-0912-9

    Article  PubMed  Google Scholar 

  29. Girard B, Berthoz A (2005) From brainstem to cortex: computational models of saccade generation circuitry. Prog Neurobiol 77:215–251. https://doi.org/10.1016/j.pneurobio.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  30. Henley D, Raghavan N, Sperling R et al (2019) Preliminary Results of a Trial of Atabecestat in Preclinical Alzheimer’s Disease. N Engl J Med 380:1483–1485. https://doi.org/10.1056/NEJMc1813435

    Article  PubMed  Google Scholar 

  31. Egan MF, Kost J, Voss T et al (2019) Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med 380:1408–1420. https://doi.org/10.1056/NEJMoa1812840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smyrnis N, Evdokimidis I, Mantas A et al (2007) Smooth pursuit eye movements in 1,087 men: effects of schizotypy, anxiety, and depression. Exp Brain Res 179:397–408. https://doi.org/10.1007/s00221-006-0797-8

    Article  PubMed  Google Scholar 

  33. Malaspina D, Amador XF, Coleman EA et al (1994) Smooth pursuit eye movement abnormality in severe major depression: effects of ECT and clinical recovery. J Neuropsychiatry Clin Neurosci 6:36–42. https://doi.org/10.1176/jnp.6.1.36

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Lyu HL, Tian XH et al (2022) The similar eye movement dysfunction between major depressive disorder, bipolar depression and bipolar mania. World J Biol Psychiatry 23:689–702. https://doi.org/10.1080/15622975.2022.2025616

    Article  CAS  PubMed  Google Scholar 

  35. Thier P, Ilg UJ (2005) The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol 15:645–652. https://doi.org/10.1016/j.conb.2005.10.013

    Article  CAS  PubMed  Google Scholar 

  36. Fukushima K (2003) Frontal cortical control of smooth-pursuit. Curr Opin Neurobiol 13:647–654. https://doi.org/10.1016/j.conb.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  37. Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471. https://doi.org/10.1152/jn.1999.82.1.463

    Article  CAS  PubMed  Google Scholar 

  38. Yan YJ, Cui DM, Lynch JC (2001) Overlap of saccadic and pursuit eye movement systems in the brain stem reticular formation. J Neurophysiol 86:3056–3060. https://doi.org/10.1152/jn.2001.86.6.3056

    Article  CAS  PubMed  Google Scholar 

  39. Pavisic IM, Firth NC, Parsons S et al (2017) Eyetracking metrics in young onset Alzheimer’s disease: a window into cognitive visual functions. Front Neurol 8:377. https://doi.org/10.3389/fneur.2017.00377

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haarmeier T, Kammer T (2010) Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cereb Cortex 20:2234–2243. https://doi.org/10.1093/cercor/bhp285

    Article  PubMed  Google Scholar 

  41. Zee DS (2021) Eye movements in general neurology and its subspecialties: introduction to the topical collection. Neurol Sci 42:387–388. https://doi.org/10.1007/s10072-020-05023-y

    Article  PubMed  PubMed Central  Google Scholar 

  42. Molitor RJ, Ko PC, Ally BA (2015) Eye movements in Alzheimer’s disease. J Alzheimers Dis 44:1–12. https://doi.org/10.3233/JAD-141173

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kahana Levy N, Lavidor M, Vakil E (2018) Prosaccade and antisaccade paradigms in persons with Alzheimer’s disease: a meta-analytic review. Neuropsychol Rev 28:16–31. https://doi.org/10.1007/s11065-017-9362-4

    Article  PubMed  Google Scholar 

  44. Fletcher WA, Sharpe JA (1986) Saccadic eye movement dysfunction in Alzheimer’s disease. Ann Neurol 20:464–471. https://doi.org/10.1002/ana.410200405

    Article  CAS  PubMed  Google Scholar 

  45. Heuer HW, Mirsky JB, Kong EL et al (2013) Antisaccade task reflects cortical involvement in mild cognitive impairment. Neurology 81:1235–1243. https://doi.org/10.1212/WNL.0b013e3182a6cbfe

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noiret N, Carvalho N, Laurent E et al (2018) Saccadic eye movements and attentional control in Alzheimer’s disease. Arch Clin Neuropsychol 33:1–13. https://doi.org/10.1093/arclin/acx044

    Article  PubMed  Google Scholar 

  47. Peltsch A, Hemraj A, Garcia A et al (2014) Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer’s disease. Eur J Neurosci 39:2000–2013. https://doi.org/10.1111/ejn.12617

    Article  PubMed  Google Scholar 

  48. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325

    Article  CAS  PubMed  Google Scholar 

  49. Garbutt S, Matlin A, Hellmuth J et al (2008) Oculomotor function in frontotemporal lobar degeneration, related disorders and Alzheimer’s disease. Brain 131:1268–1281. https://doi.org/10.1093/brain/awn047

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants in the study and the staff involved.

Funding

This work was supported by Application of Clinical Technology in Elderly Health Research Project in Jiangsu Province (LD2021031); Suzhou Science and Technology Plan Medical and Health Care Science and Technology Innovation Applied Basic Research (SKY2022161); Research Project of Neurological Diseases in the Second Affiliated Hospital of Suzhou University, Research Center (ND2023A01); Jiangsu Provincial Medical Key Discipline for the 14th Five-Year Plan (ZDXK202217).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: HH, JZ, XW. Acquisition of data: SL, ML. Analysis and interpretation of data: XW, SL, YZ, YZ. Drafting of the manuscript: XW. Critical revision of the manuscript for important intellectual content: HH, CL, JZ. XW: conceptualization, software, formal analysis, visualization, writing—original draft. SL: investigation, formal analysis, data curation, validation. ML: software, data curation, validation. YZ: investigation, formal analysis, methodology. JZ: software, supervision, formal analysis, validation, methodology. CL: writing—review and editing. HH: writing—review and editing, conceptualization, supervision, project administration.

Corresponding author

Correspondence to Hua Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the ethics committee of the Second Affiliated Hospital of Soochow University (JD-LK-2021-049-01).

Informed of consent

AD patients and their families signed informed consent forms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, X., Liu, S., Li, M. et al. Differential eye movement features between Alzheimer’s disease patients with and without depressive symptoms. Aging Clin Exp Res 35, 2987–2996 (2023). https://doi.org/10.1007/s40520-023-02595-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02595-5

Keywords

Navigation