Skip to main content

Advertisement

Log in

Cognitive and vascular function in older adults with and without CKD

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Cognitive impairment is a common complication of aging that is also associated with chronic kidney disease (CKD). Vascular dysfunction has been implicated as a potential cause of cognitive impairment in older adults, with particular deficits noted in those with CKD.

Aims

To determine the differences in cognitive function and vascular compliance in older adults with and without CKD with preclinical cognitive impairment and the relationship between these factors.

Methods

Utilizing a cross-sectional approach, 48 older adults with preclinical cognitive impairment (24 with and 24 without CKD) were evaluated for performance on a test of global cognition and executive function, and vascular compliance via tonometry and ultrasound.

Results

Cognitive function and some indicators of vascular function were significantly different in older adults with and without CKD. Global cognition was correlated with carotid-femoral pulse wave velocity (r = − 0.36, p = 0.02) in the entire sample. Vascular function was not correlated with executive function.

Discussion

Older adults with preclinical cognitive impairment and CKD had different cognitive and vascular function than those without CKD, and an indicator of vascular function may have a relationship with cognitive function in older adults.

Conclusions

The findings of this study support the assessment of cognitive and vascular function in older adults with and without CKD with preclinical cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Population Reference Bureau (2016) Fact Sheet: aging in the United States. https://www.prb.org/Publications/Media-Guides/2016/aging-unitedstates-fact-sheet.aspx. August 19, 2020

  2. Centers for Disease Control (CDC) (2009) Health Policy Data Requests—Percent of U.S. Adults 55 and Over with Chronic Conditions. https://www.cdc.gov/nchs/health_policy/adult_chronic_conditions.htm#modalIdString_CDCTable_2. August 19, 2020

  3. National Kidney Foundation (NKF) (2002) KDOQI Clinical Practice Guidelines for Chronic Kidney Diseases: Evaluation, classification, and stratification. https://www.kidney.org/sites/default/files/docs/ckd_evaluation_classification_stratification.pdf. Accessed 3-1-18

  4. Coresh J, Selvin E, Stevens LA et al (2007) Prevalence of chronic kidney disease in the United States. JAMA 298:2038–2047. https://doi.org/10.1001/jama.298.17.2038

    Article  CAS  PubMed  Google Scholar 

  5. Rosner M, Abdel-Rahman E, Williams ME et al (2010) Geriatric nephrology: responding to a growing challenge. Clin J Am Soc Nephrol 5:936–942. https://doi.org/10.2215/CJN.08731209

    Article  PubMed  Google Scholar 

  6. Lindeboom J, Weinstein H (2004) Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer’s disease, and vascular cognitive impairment. Eur J Pharmacol 490:83–86. https://doi.org/10.1016/j.ejphar.2004.02.046

    Article  CAS  PubMed  Google Scholar 

  7. Mitchell GF (2008) Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol 105:1652–1660. https://doi.org/10.1152/japplphysiol.90549.2008

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kurella M, Chertow GM, Fried LF et al (2005) Chronic kidney disease and cognitive impairment in the elderly: the health, aging, and body composition study. J Am Soc Nephrol: JASN 16:2127–2133. https://doi.org/10.1681/ASN.2005010005

    Article  PubMed  Google Scholar 

  9. Seliger SL, Siscovick DS, Stehman-Breen CO et al (2004) Moderate renal impairment and risk of dementia among older adults: the Cardiovascular Health Cognition Study. J Am Soc Nephrol: JASN 15:1904–1911. https://doi.org/10.1097/01.ASN.0000131529.60019.FA

    Article  PubMed  Google Scholar 

  10. Shen Z, Ruan Q, Yu Z et al (2016) Chronic kidney disease-related physical frailty and cognitive impairment: a systemic review. Geriatr Gerontol Int. https://doi.org/10.1111/ggi.12758

    Article  PubMed  Google Scholar 

  11. Seliger SL, Wendell CR, Waldstein SR et al (2015) Renal function and long-term decline in cognitive function: the Baltimore Longitudinal Study of Aging. Am J Nephrol 41:305–312. https://doi.org/10.1159/000430922

    Article  PubMed  Google Scholar 

  12. DeCarli C (2003) Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol 2:15–21. https://doi.org/10.1016/S1474-4422(03)00262-X

    Article  PubMed  Google Scholar 

  13. Brookmeyer R, Johnson E, Ziegler-Graham K et al (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186. https://doi.org/10.1016/j.jalz.2007.04.381

    Article  PubMed  Google Scholar 

  14. Viggiano D, Wagner CA, Martino G et al (2020) Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol. https://doi.org/10.1038/s41581-020-0266-9

    Article  PubMed  Google Scholar 

  15. Karasavvidou D, Boutouyrie P, Kalaitzidis R et al (2018) Arterial damage and cognitive decline in chronic kidney disease patients. J Clin Hypertens (Greenwich). https://doi.org/10.1111/jch.13350

    Article  Google Scholar 

  16. Townsend RR, Tomiyama H (2013) Arterial stiffness, kidney function, and chronic kidney disease progression. Pulse 1:123–130. https://doi.org/10.1159/000354113

    Article  PubMed  PubMed Central  Google Scholar 

  17. Townsend RR, Wimmer NJ, Chirinos JA et al (2010) Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am J Hypertens 23:282–289. https://doi.org/10.1038/ajh.2009.240

    Article  PubMed  Google Scholar 

  18. Mizobuchi M (2009) Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol 20:1453–1464. https://doi.org/10.1681/ASN.2008070692

    Article  CAS  PubMed  Google Scholar 

  19. Bronas UG, Puzantian H, Hannan M (2017) Cognitive impairment in chronic kidney disease: vascular milieu and the potential therapeutic role of exercise. BioMed Res Int. https://doi.org/10.1155/2017/2726369

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jessen F, Amariglio RE, van Boxtel M et al (2014) A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 10:844–852. https://doi.org/10.1016/j.jalz.2014.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. O'Brien JT, Erkinjuntti T, Reisberg B et al (2003) Vascular cognitive impairment. Lancet Neurol 2:89–98. https://doi.org/10.1016/S1474-4422(03)00305-3

    Article  PubMed  Google Scholar 

  22. World HealthOrganization (WHO) (2016) Proposed working definition of an older person in Africa for the MDS Project. https://www.who.int/healthinfo/survey/ageingdefnolder/en/. Accessed October 30, 2017

  23. Lee SJ, Go AS, Lindquist K et al (2008) Chronic conditions and mortality among the oldest old. Am J Pub Health 98:1209–1214. https://doi.org/10.2105/AJPH.2007.130955

    Article  Google Scholar 

  24. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  25. Research Match. (2018). https://www.researchmatch.org/researchers/faq. Accessed 20 Dec 2018

  26. Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  27. Toglia J, Fitzgerald KA, O'Dell MW et al (2011) The mini-mental state examination and montreal cognitive assessment in persons with mild subacute stroke: relationship to functional outcome. Arch Phys Med Rehabil 92:792–798. https://doi.org/10.1016/j.apmr.2010.12.034

    Article  PubMed  Google Scholar 

  28. Koski L, Xie H, Konsztowicz S (2011) Improving precision in the quantification of cognition using the Montreal cognitive assessment and the mini-mental state examination. Int Psychogeriatr 23:1107

    Article  PubMed  Google Scholar 

  29. Freitas S, Simões MR, Marôco J et al (2012) Construct validity of the Montreal cognitive assessment (MoCA). J Int Neuropsychol Soc 18(2):242

    Article  PubMed  Google Scholar 

  30. Gill DJ, Freshman A, Blender JA et al (2008) The Montreal cognitive assessment as a screening tool for cognitive impairment in Parkinson’s disease. Mov Disord 23:1043–1046. https://doi.org/10.1002/mds.22017

    Article  PubMed  Google Scholar 

  31. Auriel E, Kliper E, Shenhar-Tsarfaty S et al (2016) Impaired renal function is associated with brain atrophy and poststroke cognitive decline. Neurology 86:1996–2005. https://doi.org/10.1212/WNL.0000000000002699

    Article  CAS  PubMed  Google Scholar 

  32. Foster R, Walker S, Brar R et al (2016) cognitive impairment in advanced chronic kidney disease: the Canadian frailty observation and interventions trial. Am J Nephrol. https://doi.org/10.1159/000450837

    Article  PubMed  Google Scholar 

  33. Iyasere O, Okai D, Brown E (2017) Cognitive function and advanced kidney disease: longitudinal trends and impact on decision-making. Clin Kidney J. https://doi.org/10.1093/ckj/sfw128

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee SH, Cho A, Min Y-K et al (2018) Comparison of the Montreal cognitive assessment and the mini-mental state examination as screening tests in hemodialysis patients without symptoms. Ren Fail 40:323–330. https://doi.org/10.1080/0886022X.2018.1455589

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anderson TJ, Phillips SA (2014) Assessment and prognosis of peripheral artery measures of vascular function. Prog Cardiovasc Dis. https://doi.org/10.1016/j.pcad.2014.11.005

    Article  PubMed  Google Scholar 

  36. Townsend RR, Wilkinson IB, Schiffrin EL et al (2015) Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American heart association. Hypertension 66:698–722. https://doi.org/10.1161/HYP.0000000000000033

    Article  CAS  PubMed  Google Scholar 

  37. Mancia G, De Backer G, Dominiczak A et al (2007) 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28:1462–1536. https://doi.org/10.1093/eurheartj/ehm236

    Article  PubMed  Google Scholar 

  38. Laurent S, Boutouyrie P (2015) The structural factor of hypertension: large and small artery alterations. Circ Res 116:1007–1021. https://doi.org/10.1161/CIRCRESAHA.116.303596

    Article  CAS  PubMed  Google Scholar 

  39. Butlin M, Qasem A (2017) Large artery stiffness assessment using SphygmoCor technology. Pulse 4:180–192. https://doi.org/10.1159/000452448

    Article  PubMed  Google Scholar 

  40. Luo X, Yang Y, Cao T et al (2011) Differences in left and right carotid intima–media thickness and the associated risk factors. Clin Radiol 66:393–398. https://doi.org/10.1016/j.crad.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  41. Casella IB, Presti C, Porta RMP et al (2008) A practical protocol to measure common carotid artery intima-media thickness. Clinics (Sao Paulo) 63:515. https://doi.org/10.1590/S1807-59322008000400017

    Article  Google Scholar 

  42. Gamble G, Zorn J, Sanders G et al (1994) Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke 25:11–16. https://doi.org/10.1161/01.STR.25.1.11

    Article  CAS  PubMed  Google Scholar 

  43. Baltgaile G (2012) Arterial wall dynamics. Perspectives in Medicine 1:146–151. https://doi.org/10.1016/j.permed.2012.02.049

    Article  Google Scholar 

  44. O'Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension (Dallas) 46:200–204. https://doi.org/10.1161/01.HYP.0000168052.00426.65

    Article  CAS  Google Scholar 

  45. Cohn JN, Duprez DA, Finkelstein SM (2009) Comprehensive noninvasive arterial vascular evaluation. Future Cardiol 5:573

    Article  PubMed  Google Scholar 

  46. Thijssen DHJ, Black MA, Pyke KE et al (2011) Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol 300:H2–12. https://doi.org/10.1152/ajpheart.00471.2010

    Article  CAS  PubMed  Google Scholar 

  47. Mitchell GF, Parise H, Vita JA et al (2004) Local shear stress and brachial artery flow-mediated dilation: the Framingham heart study. Hypertension 44:134–139. https://doi.org/10.1161/01.HYP.0000137305.77635.68

    Article  CAS  PubMed  Google Scholar 

  48. Berry KL, Skyrme-Jones RAP, Meredith IT (2000) Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation. Clin Sci 99:261–267. https://doi.org/10.1042/CS20000028

    Article  CAS  Google Scholar 

  49. Betik AC, Luckham VB, Hughson RL (2004) Flow-mediated dilation in human brachial artery after different circulatory occlusion conditions. Am J Physiol Heart Circ Physiol 286:442–448. https://doi.org/10.1152/ajpheart.00314.2003

    Article  Google Scholar 

  50. Pyke KE, Tschakovsky ME (2005) The relationship between shear stress and flow-mediated dilatation: implications for the assessment of endothelial function. J Physiol 568:357–369. https://doi.org/10.1113/jphysiol.2005.089755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kurella M, Chertow GM, Luan J et al (2004) Cognitive impairment in chronic kidney disease. J Am Geriatr Soc 52:1863–1869. https://doi.org/10.1111/j.1532-5415.2004.52508.x

    Article  PubMed  Google Scholar 

  52. Kurella M, Yaffe K, Shlipak MG et al (2005) Chronic kidney disease and cognitive impairment in menopausal women. Am J Kid DIs 45:66–76. https://doi.org/10.1053/j.ajkd.2004.08.044

    Article  PubMed  Google Scholar 

  53. Yaffe K, Chronic Renal Insufficiency Cohort I (2010) Chronic kidney disease and cognitive function in older adults: findings from the chronic renal insufficiency cohort cognitive study. J Am Geriatr Soc 58:338–345. https://doi.org/10.1111/j.1532-5415.2009.02670.x

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vanderlinden JA, Ross-White A, Holden R et al (2019) Quantifying cognitive dysfunction across the spectrum of end-stage kidney disease: a systematic review and meta-analysis. Nephrology 24:5–16. https://doi.org/10.1111/nep.13448

    Article  PubMed  Google Scholar 

  55. Slinin Y, Osteoporotic Fractures in Men Study G (2008) Kidney function and cognitive performance and decline in older men. J Am Geriatr Soc 56:2082–2088. https://doi.org/10.1111/j.1532-5415.2008.01936.x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Weiner DE, Gaussoin SA, Nord J et al (2017) Cognitive function and kidney disease: baseline data from the systolic blood pressure intervention trial (SPRINT). Am J Kid Dis 70:357–367. https://doi.org/10.1053/j.ajkd.2017.04.021

    Article  PubMed  Google Scholar 

  57. Hannan M, Steffen A, Quinn L et al (2018) The assessment of cognitive function in older adult patients with chronic kidney disease: an integrative review. J Nephrol. https://doi.org/10.1007/s40620-018-0494-2

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schneider SM, Kielstein JT, Braverman J et al (2015) Cognitive function in patients with chronic kidney disease: challenges in neuropsychological assessments. Semin Nephrol 35(4):304

    Article  PubMed  Google Scholar 

  59. Briet M, Bozec E, Laurent S et al (2006) Arterial stiffness and enlargement in mild-to-moderate chronic kidney disease. Kidney Int 69(2):350–357. https://doi.org/10.1038/sj.ki.5000047

    Article  CAS  PubMed  Google Scholar 

  60. Georgianos PI, Sarafidis PA, Liakopoulos V (2015) Arterial stiffness: a novel risk factor for kidney injury progression? Am J Hypertens 28:958–965. https://doi.org/10.1093/ajh/hpv004

    Article  CAS  PubMed  Google Scholar 

  61. Briet M, Collin C, Karras A et al (2011) Arterial remodeling associates with CKD progression. J Am Soc Nephrol 22:967–974. https://doi.org/10.1681/ASN.2010080863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hadi HAR, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1:183–198

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Singer J, Trollor JN, Baune BT et al (2014) Arterial stiffness, the brain and cognition: a systematic review. Ageing Res Rev 15:16–27. https://doi.org/10.1016/j.arr.2014.02.002

    Article  PubMed  Google Scholar 

  64. Li X, Lyu P, Ren Y et al (2017) Arterial stiffness and cognitive impairment. J Neurol Sci 380:1–10. https://doi.org/10.1016/j.jns.2017.06.018

    Article  PubMed  Google Scholar 

  65. Iulita MF, Noriega de la Colina A, Girouard H (2018) Arterial stiffness, cognitive impairment and dementia: confounding factor or real risk? J Neurochem 144:527–548. https://doi.org/10.1111/jnc.14235

    Article  CAS  PubMed  Google Scholar 

  66. Zeki Al Hazzouri A, Newman AB, Simonsick E et al (2013) Pulse wave velocity and cognitive decline in elders: the Health, Aging, and Body Composition study. Stroke 44:388–393. https://doi.org/10.1161/STROKEAHA.112.673533

    Article  PubMed  Google Scholar 

  67. Waldstein SR, Rice SC, Thayer JF et al (2008) Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore longitudinal study of aging. Hypertension 51:99–104. https://doi.org/10.1161/HYPERTENSIONAHA.107.093674

    Article  CAS  PubMed  Google Scholar 

  68. Benetos AMDP, Watfa GMDM, Hanon OMDP et al (2012) Pulse wave velocity is associated with 1-Year cognitive decline in the elderly older than 80 years: the PARTAGE study. J Am Med Dir Assoc 13:239–243. https://doi.org/10.1016/j.jamda.2010.08.014

    Article  PubMed  Google Scholar 

  69. Scuteri A, Tesauro M, Appolloni S et al (2007) Arterial stiffness as an independent predictor of longitudinal changes in cognitive function in the older individual. J Hypertens 25:1035–1040. https://doi.org/10.1097/HJH.0b013e3280895b55

    Article  CAS  PubMed  Google Scholar 

  70. Poels MMF, van Oijen M, Mattace-Raso FUS et al (2007) Arterial stiffness, cognitive decline, and risk of dementia: the Rotterdam study. Stroke 38:888–892. https://doi.org/10.1161/01.STR.0000257998.33768.87

    Article  PubMed  Google Scholar 

  71. Geijselaers SLC, Sep SJS, Schram MT et al (2016) Carotid stiffness is associated with impairment of cognitive performance in individuals with and without type 2 diabetes. Maastricht Study Atheroscler 253:186–193. https://doi.org/10.1016/j.atherosclerosis.2016.07.912

    Article  CAS  Google Scholar 

  72. Townsend RR (2015) Arterial stiffness and chronic kidney disease: lessons from the Chronic Renal Insufficiency Cohort study. Curr Opin Nephrol Hypertens 24:47–53. https://doi.org/10.1097/MNH.0000000000000086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Hannan is a Robert Wood Johnson Foundation Future of Nursing Scholar Postdoctoral Fellow. The views expressed here do not necessarily reflect the views of the Foundation. Dr. Hannan is a T32 Postdoctoral Fellow. Research reported in this publication was supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Number T32HL134634. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

This study was supported by a Grant made available by the American Nephrology Nurses Association (ANNA). Findings of the study do not necessarily reflect the opinions of ANNA. The views expressed herein are those of the author and no official endorsement by ANNA is intended or should be inferred. Dr. Bronas and the parent study were supported by NIH-NIA AG022849-15S1 and NIH-NIA AG022849. The project described was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1TR002003. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MH, EGC, SAP, LQ, AS, and UGB; methodology: MH, EGC, SAP, LQ, AS, and UGB; formal analysis and investigation: MH; writing—original draft preparation: MH; writing—review and editing: MH, EGC, SAP, LQ, AS, and UGB; funding acquisition: MH and UGB; resources: MH, SAP and UGB; supervision: MH, EGC, SAP, LQ, AS, and UGB.

Corresponding author

Correspondence to Ulf G. Bronas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was Granted by the Internal Review Board of the University of Illinois at Chicago (7/11/2018/#2018-0641).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannan, M., Collins, E.G., Phillips, S.A. et al. Cognitive and vascular function in older adults with and without CKD. Aging Clin Exp Res 33, 1885–1894 (2021). https://doi.org/10.1007/s40520-020-01695-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-020-01695-w

Keywords

Navigation