Skip to main content
Log in

Finite Element Simulation of Residual Stress Induced by High Energy Beam Welding in Dual Phase Steel

Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In this study, the residual stresses that arise during the high energy beam welding of dual phase steels were investigated using a sequentially coupled 3D finite element model. To accurately predict the sharp temperature gradients across the different weld zones, a moving volumetric heat source model, combining a spherical and a conical thermal flux distribution was developed. The temperature profiles computed with this heat source model were found to be in excellent agreement with the measured temperatures. Additionally, the simulated weld geometry was compared to the optical micrographs of the weld cross section to validate the heat source model parameters. The time-temperature history recorded at each node of the FE mesh served as input for the metallurgical and mechanical analyses, where the kinetics of phase transformations, the volumetric dilatations and thereby, the residual stresses in the weld joint were calculated. A metallurgical framework that includes the effect of volumetric strains occurring due to the phase transformations on the residual stresses was presented. The results show that the solid-solid phase transition occurring during cooling in a weld procedure can have a large influence on the magnitude of the residual stress. Furthermore, a comparison of the predicted welding residual stresses with the experimental drill-hole test results in both the weld seam and the base material was also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Flint, T., Francis, J., Smith, M., Balakrishnan, J.: Extension of the double-ellipsoidal heat source model to narrow-groove and keyhole weld configurations. Journal of Materials Processing Technology 246(Supplement C), 123–135 (2017). https://doi.org/10.1016/j.jmatprotec.2017.02.002. http://www.sciencedirect.com/science/article/pii/S0924013617300468

    Article  Google Scholar 

  2. Pamnani, R., Vasudevan, M., Jayakumar, T., Vasantharaja, P., Ganesh, K.: Numerical simulation and experimental validation of arc welding of dmr-249a steel. Defence Technology 12(4), 305–315 (2016). https://doi.org/10.1016/j.dt.2016.01.012. http://www.sciencedirect.com/science/article/pii/S2214914716300010

    Article  Google Scholar 

  3. Mi, G., Zhan, X., Wei, Y., Ou, W., Gu, C., Yu, F.: A thermal–metallurgical model of laser beam welding simulation for carbon steels. Modelling and Simulation in Materials Science and Engineering 23(3), 035010 (2015). http://stacks.iop.org/0965-0393/23/i=3/a=035010

    Article  Google Scholar 

  4. Xia, J., Jin, H.: Numerical modeling of coupling thermal–metallurgical transformation phenomena of structural steel in the welding process, Advances in Engineering Software, https://doi.org/10.1016/j.advengsoft.2017.08.011. http://www.sciencedirect.com/science/article/pii/S0965997817303952

    Article  Google Scholar 

  5. Bhadeshia, H., Wayman, C.: 9 - phase transformations: Nondiffusive. In: Laughlin, D. E., Hono, K. (eds.) Physical Metallurgy, vol. 5, pp 1021–1072. Elsevier, Oxford (2014). https://doi.org/10.1016/B978-0-444-53770-6.00009-5. https://www.sciencedirect.com/science/article/pii/B9780444537706000095

    Chapter  Google Scholar 

  6. Deng, D., Murakawa, H.: Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science 37(3), 269–277 (2006). https://doi.org/10.1016/j.commatsci.2005.07.007. http://www.sciencedirect.com/science/article/pii/S0927025605002624

    Article  Google Scholar 

  7. Deng, D.: FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Materials and Design 30 (2), 359–366 (2009). https://doi.org/10.1016/j.matdes.2008.04.052. http://www.sciencedirect.com/science/article/pii/S0261306908001556

    Article  Google Scholar 

  8. Kumar, S., Kundu, A., Venkata, K., Evans, A., Truman, C., Francis, J., Bhanumurthy, K., Bouchard, P., Dey, G.: Residual stresses in laser welded astm a387 grade 91 steel plates. Materials Science and Engineering: A 575(Supplement C), 160–168 (2013). https://doi.org/10.1016/j.msea.2013.03.046. http://www.sciencedirect.com/science/article/pii/S092150931300316X

    Article  Google Scholar 

  9. Hamelin, C. J., Muránsky, O., Smith, M. C., Holden, T. M., Luzin, V., Bendeich, P. J., Edwards, L.: Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments. Acta Materialia 75(Supplement C), 1–19 (2014). https://doi.org/10.1016/j.actamat.2014.04.045. http://www.sciencedirect.com/science/article/pii/S1359645414002961

    Article  Google Scholar 

  10. Ni, J., Wahab, M. A.: A numerical kinematic model of welding process for low carbon steels. Computers and Structures 186(Supplement C), 35–49 (2017). https://doi.org/10.1016/j.compstruc.2017.03.009. http://www.sciencedirect.com/science/article/pii/S0045794917300445

    Article  Google Scholar 

  11. Khan, S., Bhadeshia, H.: Kinetics of martensitic transformation in partially bainitic 300m steel. Materials Science and Engineering: A 129(2), 257–272 (1990). https://doi.org/10.1016/0921-5093(90)90273-6. http://www.sciencedirect.com/science/article/pii/0921509390902736

    Article  Google Scholar 

  12. Jones, S., Bhadeshia, H.: Kinetics of the simultaneous decomposition of austenite into several transformation products. Acta Materialia 45(7), 2911–2920 (1997). https://doi.org/10.1016/S1359-6454(96)00392-8. http://www.sciencedirect.com/science/article/pii/S1359645496003928

    Article  Google Scholar 

  13. Takahashi, M., Bhadeshia, H. K. D. H.: A model for the microstructure of some advanced bainitic steels. Materials Transactions JIM 32(8), 689–696 (1991). https://doi.org/10.2320/matertrans1989.32.689

    Article  Google Scholar 

  14. Wang, Q., Liu, X., Wang, P., Xiong, X., Fang, H.: Numerical simulation of residual stress in 10ni5crmov steel weldments. Journal of Materials Processing Technology 240(Supplement C), 77–86 (2017). https://doi.org/10.1016/j.jmatprotec.2016.09.011 . http://www.sciencedirect.com/science/article/pii/S0924013616303338

    Article  Google Scholar 

  15. Sun, X., Choi, K., Liu, W., Khaleel, M.: Predicting failure modes and ductility of dual phase steels using plastic strain localization. International Journal of Plasticity 25(10), 1888–1909 (2009). https://doi.org/10.1016/j.ijplas.2008.12.012 . http://www.sciencedirect.com/science/article/pii/S0749641908001897

    Article  Google Scholar 

  16. Ramazani, A., Mukherjee, K., Schwedt, A., Goravanchi, P., Prahl, U., Bleck, W.: Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. International Journal of Plasticity 43, 128–152 (2013). https://doi.org/10.1016/j.ijplas.2012.11.003. http://www.sciencedirect.com/science/article/pii/S0749641912001684

    Article  Google Scholar 

  17. Tasan, C., Hoefnagels, J., Diehl, M., Yan, D., Roters, F., Raabe, D.: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. International Journal of Plasticity 63, 198–210 (2014). deformation Tensors in Material Modeling in Honor of Prof. Otto T. Bruhns. https://doi.org/10.1016/j.ijplas.2014.06.004. http://www.sciencedirect.com/science/article/pii/S0749641914001260

    Article  Google Scholar 

  18. Minami, H., Nakayama, K., Morikawa, T., Higashida, K., Toji, Y., Hasegawa, K.: Effect of tempering conditions on inhomogeneous deformation behavior of ferrite-martensite dual-phase steels. Tetsu-to-Hagane 97(9), 493–500 (2011). https://doi.org/10.2355/tetsutohagane.97.493

    Article  Google Scholar 

  19. Hasegawa, K., Toji, Y., Minami, H., Ikeda, H., Morikawa, T., Higashida, K.: Effect of martensite fraction on tensile properties of dual-phase steels. Tetsu-to-Hagane 98(6), 320–327 (2012). https://doi.org/10.2355/tetsutohagane.98.320

    Article  Google Scholar 

  20. Gach, S., Olschok, S., Francis, J. A., Reisgen, U.: Confirmation of tensile residual stress reduction in electron beam welding using low transformation temperature materials (LTT) as localized metallurgical injections – Part 2: Residual stress measurement. Materials Testing 59(7-8), 618–624 (2017). https://doi.org/10.3139/120.111046

    Article  Google Scholar 

  21. Hibbit, Karlsson, Sorensen: ABAQUS/Standard Analysis User’s Manual. Hibbit, Karlsson, Sorensen Inc., USA (2017)

    Google Scholar 

  22. Goldak, J., Chakravarti, A., Bibby, M.: A new finite element model for welding heat sources. Metall. Trans. B 15(2), 299–305 (1984). https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  23. Ronda, J., Oliver, G.: Consistent thermo-mechano-metallurgical model of welded steel with unified approach to derivation of phase evolution laws and transformation-induced plasticity. Computer Methods in Applied Mechanics and Engineering 189 (2), 361–418 (2000). https://doi.org/10.1016/S0045-7825(99)00461-2. http://www.sciencedirect.com/science/article/pii/S0045782599004612

    Article  MATH  Google Scholar 

  24. Deng, D., Murakawa, H.: Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25cr–1mo steel pipes. Computational Materials Science 43(4), 681–695 (2008). https://doi.org/10.1016/j.commatsci.2008.01.025. http://www.sciencedirect.com/science/article/pii/S0927025608000219

    Article  Google Scholar 

  25. Caballero, F. G., Capdevila, C., Andres, C. G. D.: Modelling of kinetics of austenite formation in steels with different initial microstructures. ISIJ Int. 41(10), 1093–1102 (2001). https://doi.org/10.2355/isijinternational.41.1093

    Article  Google Scholar 

  26. Thiessen, R. G.: Physically-based modelling of material response to welding. Ph.D. thesis, Delft University of Technology (2006)

  27. Wilson, E., Medina, S.: Application of koistinen and marburger’s athermal equation for volume fraction of martensite to diffusional transformations obtained on continuous cooling 0⋅13%c high strength low alloy steel. Mater. Sci. Technol. 16 (6), 630–633 (2000). https://doi.org/10.1179/026708300101508397

    Article  Google Scholar 

  28. Pan, H. H., Weng, G. J.: Thermal stress and volume change during a cooling process involving phase transformation. J. Therm. Stresses 15(1), 1–23 (1992). https://doi.org/10.1080/01495739208946117

    Article  Google Scholar 

  29. Motaman, S. A. H., Komerla, K., Storms, T., Prahl, U., Brecher, C., Bleck, W.: Experimental and numerical investigation of dual phase steels formability during laser-assisted hole-flanging. AIP Conference Proceedings 1960(1), 060005 (2018). https://aip.scitation.org/doi/abs/10.1063/1.5034894

    Article  Google Scholar 

  30. Lienert, T., Siewert, T., Babu, S., Acoff, V.: ASM handbook, Vol. 6A, ASM International (2011)

  31. Nakada, N., Tsuchiyama, T., Takaki, S., Miyano, N.: Temperature dependence of austenite nucleation site on reversion of lath martensite, in: THERMEC 2009, Vol. 638 of Materials Science Forum, Trans Tech Publications, 2010, pp. 3424–3429. https://doi.org/10.4028/www.scientific.net/MSF.638-642.3424

    Article  Google Scholar 

  32. Nakada, N., Tsuchiyama, T., Takaki, S., Ponge, D., Raabe, D.: Transition from diffusive to displacive austenite reversion in low-alloy steel. ISIJ Int. 53(12), 2275–2277 (2013). https://doi.org/10.2355/isijinternational.53.2275

    Article  Google Scholar 

  33. Kouadri-Henni, A., Seang, C., Malard, B., Klosek, V.: Residual stresses induced by laser welding process in the case of a dual-phase steel dp600: Simulation and experimental approaches. Materials and Design 123, 89–102 (2017). https://doi.org/10.1016/j.matdes.2017.03.022. http://www.sciencedirect.com/science/article/pii/S0264127517302617

    Article  Google Scholar 

  34. ul Abdein, M. Z., Nelias, D., Jullien, J.-F., Deloison, D.: Prediction of laser beam welding-induced distortions and residual stresses by numerical simulation for aeronautic application. Journal of Materials Processing Technology 209 (6), 2907–2917 (2009). https://doi.org/10.1016/j.jmatprotec.2008.06.051. http://www.sciencedirect.com/science/article/pii/S0924013608005542

    Article  Google Scholar 

  35. Xia, M., Biro, E., Tian, Z., Zhou, Y. N.: Effects of heat input and martensite on haz softening in laserwelding of dual phase steels. ISIJ International 48(6), 809–814 (2008). https://www.jstage.jst.go.jp/article/isijinternational/48/6/48_6_809/_pdf

    Article  Google Scholar 

  36. Saunders, N., Guo, U. K. Z., Li, X., Miodownik, A. P., Schillé, J. P.: Using jmatpro to model materials properties and behavior. JOM 55(12), 60–65 (2003). https://doi.org/10.1007/s11837-003-0013-2

    Article  Google Scholar 

  37. Li, X., Wang, L., Yang, L., Wang, J., Li, K.: Modeling of temperature field and pool formation during linear laser welding of dp1000 steel. J Mater. Process. Technol. 214 (9), 1844–1851 (2014). https://doi.org/10.1016/j.jmatprotec.2014.03.030. http://www.sciencedirect.com/science/article/pii/S0924013614001216

    Article  Google Scholar 

Download references

Acknowledgements

The presented investigations were carried out at RWTH Aachen University within the framework of the Collaborative Research Centre SFB1120-236616214 “Bauteilpräzision durch Beherrschung von Schmelze und Erstarrung in Produktionsprozessen” and funded by the Deutsche Forschungsgemeinschaft e.V. (DFG, German Research Foundation). The sponsorship and support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Komerla.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 4 Thermal properties of dual phase steel as obtained from JmatPro [36]
Table 5 Latent heat of fusion taken from [37]
Fig. 14
figure 14

Equilibrium phase diagram of dual phase steel calculated using the Calphad based tool ThermoCalc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komerla, K., Gach, S., Akyel, F. et al. Finite Element Simulation of Residual Stress Induced by High Energy Beam Welding in Dual Phase Steel. Lasers Manuf. Mater. Process. 7, 154–176 (2020). https://doi.org/10.1007/s40516-020-00112-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-020-00112-4

Keywords

Navigation