Skip to main content
Log in

Parameters Affecting the Welding of Transparent Materials Using Femtosecond Laser Pulses

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

There is a pressing need for an accurate process in industrial laser applications such as welding transparent materials. Femtosecond laser pulses, which depend on the nonlinear absorption properties, can be utilized to weld transparent materials. This technique can be applied not only in welding different transparent materials such as glass and polymers, but also in welding opaque materials such as metals, depending on the selection of an appropriate laser wavelength. The parameters that affect the technique such as Keldysh parameter, pulse energy, pulse repetition rate, pulse duration and nonlinear absorptivity were studied. To explain the welding process, an example of an experimental setup and its requirements was described. Besides that, the challenges for the welding process and their voids were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tamaki, T., et al.: Welding of transparent materials using femtosecond laser pulses. Jpn J Appl Phys. 44(5L), L687 (2005)

    Article  Google Scholar 

  2. Sugioka, K., Cheng, Y.: Ultrafast lasers—reliable tools for advanced materials processing. Light: Science & Applications. 3(4), e149 (2014)

    Article  Google Scholar 

  3. Tamaki, T., Watanabe, W., Itoh, K.: Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm. Opt Express. 14(22), 10460–10468 (2006)

    Article  Google Scholar 

  4. Yuan, L.: Femtosecond Laser Micromachining of Advanced Fiber Optic Sensors and Devices. Clemson University, Doctoral dissertation (2017)

    Google Scholar 

  5. Zhang, G., Stoian, R., Zhao, W., Cheng, G.: Femtosecond laser Bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone. Opt Express. 26(2), 917–926 (2018)

    Article  Google Scholar 

  6. Kongsuwan, P., Satoh, G., Yao, Y.L.: Transmission welding of glass by femtosecond laser: mechanism and fracture strength. J Manuf Sci Eng. 134(1), 011004 (2012)

    Article  Google Scholar 

  7. Gattass, R., Femtosecond-laser interactions with transparent materials: applications in micromachining and supercontinuum generation. 2006: Harvard University

  8. Sugioka, K., Cheng, Y.: Femtosecond laser three-dimensional micro-and nanofabrication. Appl Phys Rev. 1(4), 041303 (2014)

    Article  Google Scholar 

  9. Carter, R.M., Chen, J., Shephard, J.D., Thomson, R.R., Hand, D.P.: Picosecond laser welding of similar and dissimilar materials. Appl Opt. 53(19), 4233–4238 (2014)

    Article  Google Scholar 

  10. Carter, R.M., Troughton, M., Chen, J., Elder, I., Thomson, R.R., Daniel Esser, M.J., Lamb, R.A., Hand, D.P.: Towards industrial ultrafast laser microwelding: SiO 2 and BK7 to aluminum alloy. Appl Opt. 56(16), 4873–4881 (2017)

    Article  Google Scholar 

  11. Richter, S., Direct Laser Bonding of Transparent Materials Using Ultrashort Laser Pulses at High Repetition Rates. 2014

    Google Scholar 

  12. Watanabe, W., et al.: Joining of transparent materials by femtosecond laser pulses. In Commercial and Biomedical Applications of Ultrafast Lasers VII. 2007. International Society for Optics and Photonics.

  13. Sutherland, R.L., Handbook of nonlinear optics. 2003: CRC press

  14. Boyd, R.W., Shi, Z., De Leon, I.: The third-order nonlinear optical susceptibility of gold. Opt Commun. 326, 74–79 (2014)

    Article  Google Scholar 

  15. Schaffer, C.B., García, J.F., Mazur, E.: Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Applied Physics A. 76(3), 351–354 (2003)

    Article  Google Scholar 

  16. Richter, S., Nolte, S., Tünnermann, A.: Ultrashort pulse laser welding-a new approach for high-stability bonding of different glasses. Phys Procedia. 39, 556–562 (2012)

    Article  Google Scholar 

  17. Butkus, S., et al.: Rapid microfabrication of transparent materials using filamented femtosecond laser pulses. Applied Physics A. 114(1), 81–90 (2014)

    Article  Google Scholar 

  18. Cvecek, K., et al.: Defect formation in glass welding by means of ultra short laser pulses. Phys Procedia. 5, 495–502 (2010)

    Article  Google Scholar 

  19. Volpe, A., di Niso, F., Gaudiuso, C., de Rosa, A., Vázquez, R.M., Ancona, A., Lugarà, P.M., Osellame, R.: Welding of PMMA by a femtosecond fiber laser. Opt Express. 23(4), 4114–4124 (2015)

    Article  Google Scholar 

  20. Miyamoto, I., Cvecek, K., Schmidt, M.: Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses. Opt Express. 19(11), 10714–10727 (2011)

    Article  Google Scholar 

  21. Miyamoto, I., et al.: Novel fusion welding technology of glass using ultrashort pulse lasers. Phys Procedia. 5, 483–493 (2010)

    Article  Google Scholar 

  22. Miyamoto, I., et al.: Fusion welding of glass using femtosecond laser pulses with high-repetition rates. J Laser Micro/Nanoeng. 2(1), 57–63 (2007)

    Article  Google Scholar 

  23. Roth, G.-L., Rung, S., Hellmann, R.: Welding of transparent polymers using femtosecond laser. Applied Physics A. 122(2), 86 (2016)

    Article  Google Scholar 

  24. Chen, J., et al.: Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding. Opt Express. 23(14), 18645–18657 (2015)

    Article  Google Scholar 

  25. Zhang, G., Cheng, G.: Direct welding of glass and metal by 1 kHz femtosecond laser pulses. Appl Opt. 54(30), 8957–8961 (2015)

    Article  Google Scholar 

  26. Basak, S., Kundu, D.: Evaluation of measurement uncertainty in determination of lead in glass materials by a standard complexometric method. Mapan. 27(3), 175–182 (2012)

    Article  Google Scholar 

  27. Sugioka, K., Iida, M., Takai, H., Micorikawa, K.: Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train. Opt Lett. 36(14), 2734–2736 (2011)

    Article  Google Scholar 

  28. Wu, S., Wu, D., Xu, J., Hanada, Y., Suganuma, R., Wang, H., Makimura, T., Sugioka, K., Midorikawa, K.: Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation. Opt Express. 20(27), 28893–28905 (2012)

    Article  Google Scholar 

  29. Wu, S., Wu, D., Xu, J., Wang, H., Makimura, T., Sugioka, K., Midorikawa, K.: Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding. Opt Express. 21(20), 24049–24059 (2013)

    Article  Google Scholar 

  30. Shanshool, H.M., et al.: Investigation of energy band gap in polymer/ZnO nanocomposites. J Mater Sci Mater Electron. 27(9), 9804–9811 (2016)

    Article  Google Scholar 

  31. Shanshool, H.M., et al.: Influence of polymer matrix on nonlinear optical properties and optical limiting threshold of polymer-ZnO nanocomposites. J Mater Sci Mater Electron. 27(9), 9503–9513 (2016)

    Article  Google Scholar 

  32. Penilla, E., Devia-Cruz, L.F., Wieg, A.T., Martinez-Torres, P., Cuando-Espitia, N., Sellappan, P., Kodera, Y., Aguilar, G., Garay, J.E.: Ultrafast laser welding of ceramics. Science. 365(6455), 803–808 (2019)

    Article  Google Scholar 

  33. Yan, L., Uddin, A., Wang, H.: ZnO tetrapods: synthesis and applications in solar cells. Nanomaterials and Nanotechnology. 5(Godište 2015), 5–19 (2015)

    Google Scholar 

  34. Zhang, G., Bai, J., Zhao, W., Zhou, K., Cheng, G.: Interface modification based ultrashort laser microwelding between SiC and fused silica. Opt Express. 25(3), 1702–1709 (2017)

    Article  Google Scholar 

  35. Watanabe, W., et al.: Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl Phys Lett. 89(2), 021106 (2006)

    Article  Google Scholar 

  36. Cvecek, K., Odato, R., Dehmel, S., Miyamoto, I., Schmidt, M.: Gap bridging in joining of glass using ultra short laser pulses. Opt Express. 23(5), 5681–5693 (2015)

    Article  Google Scholar 

  37. Ciuca, O.P., et al.: Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds. Mater Charact. 120, 53–62 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haider Mohammed Shanshool.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanshool, H.M., Naser, H., Hadi, N.M. et al. Parameters Affecting the Welding of Transparent Materials Using Femtosecond Laser Pulses. Lasers Manuf. Mater. Process. 7, 59–73 (2020). https://doi.org/10.1007/s40516-019-00108-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-019-00108-9

Keywords

Navigation