Skip to main content
Log in

Noise suppression in inverse weak value-based phase detection

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

We examine the effect of different sources of technical noise on inverse weak value-based precision phase measurements. We find that this type of measurement is similarly robust to technical noise as related experiments in the weak value regime. In particular, the measurements considered here are robust to additive Gaussian white noise and angular jitter noise commonly encountered in optical experiments. Additionally, we show the same techniques used for precision phase measurement can be used with the same technical advantages for optical frequency measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. Am. Phys. Soc. 60, 1351 (1988). https://doi.org/10.1103/PhysRevLett.60.1351

    Article  Google Scholar 

  2. Hosten, O., Kwiat, P.: Observation of the spin hall effect of light via weak measurements. Science 319, 787 (2008)

    Article  Google Scholar 

  3. Dixon, P.B., Starling, D.J., Jordan, A.N., Howell, J.C.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009)

    Article  Google Scholar 

  4. Starling, D.J., Dixon, P.B., Jordan, A.N., Howell, J.C.: Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values. Phys. Rev. A 80, 041803 (2009)

    Article  Google Scholar 

  5. Starling, D.J., Dixon, P.B., Jordan, A.N., Howell, J.C.: Precision frequency measurements with interferometric weak values. Phys. Rev. A 82, 063822 (2010)

    Article  Google Scholar 

  6. Starling, D.J., Dixon, P.B., Williams, N.S., Jordan, A.N., Howell, J.C.: Continuous phase amplification with a Sagnac interferometer. Phys. Rev. A 82, 011802(R) (2010)

    Article  Google Scholar 

  7. Howell, J.C., Starling, D.J., Dixon, P.B., Vudyasetu, P.K., Jordan, A.N.: Interferometric weak value deflections: quantum and classical treatments. Phys. Rev. A 81, 033813 (2010)

    Article  Google Scholar 

  8. Hogan, J.M., Hammer, J., Chiow, S.-W., Dickerson, S., Johnson, D.M.S., Kovachy, T., Sugarbaker, A., Kasevich, M.A.: Precision angle sensor using an optical lever inside a Sagnac interferometer. Opt. Lett. 36, 1698 (2011). https://doi.org/10.1364/OL.36.001698

    Article  Google Scholar 

  9. Pfeifer, M., Fischer, P.: Instrumentation, measurement, and metrology; Refraction; Birefringence; Chiral media. Opt. Express 19, 16508 (2011). https://doi.org/10.1364/OE.19.016508

    Article  Google Scholar 

  10. Egan, P., Stone, J.A.: Weak-value thermostat with 0.2 mK precision. Opt. Lett. 37, 4991 (2012). https://doi.org/10.1364/OL.37.004991

    Article  Google Scholar 

  11. Gorodetski, Y., Bliokh, K.Y., Stein, B., Genet, C., Shitrit, N., Kleiner, V., Hasman, E., Ebbesen, T.W.: Weak measurements of light chirality with a plasmonic slit, experimental observation of the spin hall effect of light on a nanometal film via weak measurements. Phys. Rev. Lett 109, 013901 (2012). https://doi.org/10.1103/PhysRevLett.109.013901

    Article  Google Scholar 

  12. Zhou, X., Xiao, Z., Luo, H., Wendoi, S.: Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements. Phys. Rev. A 85, 043809 (2012). https://doi.org/10.1103/PhysRevA.85.043809

    Article  Google Scholar 

  13. Strübi, G., Bruder, C.: Measuring ultrasmall time delays of light by joint weak measurements. Phys. Rev. Lett. 110, 083605 (2013). https://doi.org/10.1103/PhysRevLett.110.083605

    Article  Google Scholar 

  14. Viza, G.I., Martínez-Rincón, J., Howland, G.A., Frostig, H., Shomroni, I., Dayan, B., Howell, J.C.: Weak-values technique for velocity measurements. Opt. Lett. 38, 2949 (2013). https://doi.org/10.1364/OL.38.002949

    Article  Google Scholar 

  15. Xu, X.-Y., Kedem, Y., Sun, K., Vaidman, L., Li, C.-F., Guo, G.-C.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013). https://doi.org/10.1103/PhysRevLett.111.033604

    Article  Google Scholar 

  16. Zhou, L., Turek, Y., Sun, C.P., Nori, F.: Weak-value amplification of light deflection by a dark atomic ensemble. Phys. Rev. A 88, 053815 (2013). https://doi.org/10.1103/PhysRevA.88.053815

    Article  Google Scholar 

  17. Magaña Loaiza, O.S., Mirhosseini, M., Rodenburg, B., Boyd, R.W.: Amplification of angular rotations using weak measurements. Phys. Rev. Lett. 112, 200401 (2014). https://doi.org/10.1103/PhysRevLett.112.200401

    Article  Google Scholar 

  18. Salazar-Serrano, L.J., Janner, D., Brunner, N., Pruneri, V., Torres, J.P.: Measurement of sub-pulse-width temporal delays via spectral interference induced by weak value amplification. Phys. Rev. A 89, 012126 (2014). https://doi.org/10.1103/PhysRevA.89.012126

    Article  Google Scholar 

  19. Salazar-Serrano, L., Barrera, D., Amaya, W., Sales, S., Pruneri, V., Capmany, J., Torres, J.: Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification. Opt. Lett. 40, 3962 (2015)

    Article  Google Scholar 

  20. Martínez-Rincón, J., Mullarkey, C.A., Viza, G.I., Liu, W.-T., Howell, J.C.: Ultrasensitive inverse weak-value tilt meter. Opt. Lett. 42, 2479 (2017). https://doi.org/10.1364/OL.42.002479

    Article  Google Scholar 

  21. Dressel, J., Malik, M., Miatto, F.M., Jordan, A.N., Boyd, R.W.: Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307 (2014). https://doi.org/10.1103/RevModPhys.86.307

    Article  Google Scholar 

  22. Pang, S., Dressel, J., Brun, T.A.: Entanglement-assisted weak value amplification. Phys. Rev. Lett. 113, 030401 (2014). https://doi.org/10.1103/PhysRevLett.113.030401

    Article  Google Scholar 

  23. Pang, S., Brun, T.A.: Improving the precision of weak measurements by postselection measurement. Phys. Rev. Lett. 115, 120401 (2015). https://doi.org/10.1103/PhysRevLett.115.120401

    Article  Google Scholar 

  24. Jordan, A.N., Martínez-Rincón, J., Howell, J.C.: Technical advantages for weak-value amplification: when less is more. Phys. Rev. X 4, 011031 (2014). https://doi.org/10.1103/PhysRevX.4.011031

    Article  Google Scholar 

  25. Knee, G.C., Gauger, E.M.: When amplification with weak values fails to suppress technical noise. Phys. Rev. X 4, 011032 (2014). https://doi.org/10.1103/PhysRevX.4.011032

    Article  Google Scholar 

  26. Viza, G.I., Martínez-Rincón, J., Alves, G.B., Jordan, A.N., Howell, J.C.: Experimentally quantifying the advantages of weak-value-based metrology. Phys. Rev. A 92, 032127 (2015)

    Article  Google Scholar 

  27. Alves, G.B., Escher, B.M., de Matos Filho, R.L., Zagury, N., Davidovich, L.: Weak-value amplification as an optimal metrological protocol. Phys. Rev. A 91, 062107 (2015). https://doi.org/10.1103/PhysRevA.91.062107

    Article  Google Scholar 

  28. Torres, J.P., Salazar-Serrano, L.J.: Weak value amplification: a view from quantum estimation theory that highlights what it is and what isn’t. Sci. Rep. 6, 19702 (2016)

    Article  Google Scholar 

  29. Harris, J., Boyd, R.W., Lundeen, J.S.: Weak value amplification can outperform conventional measurement in the presence of detector saturation (2016). arXiv preprint. arXiv:1612.04327

  30. Pang, S., Alonso, J.R.G., Brun, T.A., Jordan, A.N.: Protecting weak measurements against systematic errors. Phys. Rev. A 94, 012329 (2016). https://doi.org/10.1103/PhysRevA.94.012329

    Article  Google Scholar 

  31. Dressel, J., Lyons, K., Jordan, A.N., Graham, T.M., Kwiat, P.G.: Strengthening weak-value amplification with recycled photons. Phys. Rev. A 88, 023821 (2013)

    Article  Google Scholar 

  32. Lyons, K., Dressel, J., Jordan, A.N., Howell, J.C., Kwiat, P.G.: Power-recycled weak-value-based metrology. Phys. Rev. Lett. 114, 170801 (2015)

    Article  Google Scholar 

  33. Byard, C., Graham, T., Jordan, A., Kwiat, P.G.: Pulse recycling and weak value metrology. In: Frontiers in Optics 2015. Optical Society of America, Paper JW2A-69 (2015)

  34. Wang, Y.-T., Tang, J.-S., Hu, G., Wang, J., Yu, S., Zhou, Z.-Q., Cheng, Z.-D., Xu, J.-S., Fang, S.-Z., Wu, Q.-L., et al.: Experimental demonstration of higher precision weak-value-based metrology using power recycling. Phys. Rev. Lett. 117, 230801 (2016)

    Article  Google Scholar 

  35. Dressel, J., Lyons, K., Jordan, A.N., Graham, T., Kwiat, P.: Strengthening weak values with recycled photons. Phys. Rev. A 88, 023821 (2013)

    Article  Google Scholar 

  36. Lyons, K., Dressel, J., Jordan, A.N., Howell, J.C., Kwiat, P.G.: Power-recycled weak-value-based metrology. Phys. Rev. Lett. 114, 170801 (2015). https://doi.org/10.1103/PhysRevLett.114.170801

    Article  Google Scholar 

  37. Kofman, A.G., Ashhab, S., Nori, F.: Nonperturbative theory of weak pre- and post-selected measurements. Phys. Rep. 520, 43 (2012). https://doi.org/10.1016/j.physrep.2012.07.001

    Article  MathSciNet  Google Scholar 

  38. Starling, D.J., Bloch, S.M., Vudyasetu, P.K., Choi, J.S., Little, B., Howell, J.C.: Double Lorentzian atomic prism. Phys. Rev. A 86, 023826 (2012). https://doi.org/10.1103/PhysRevA.86.023826

    Article  Google Scholar 

  39. Boyd, R.W., Gauthier, D.J.: Slow and Fast Light. University of Rochester Institute of Optics, Technical Report (2001)

Download references

Acknowledgements

This work was supported by DRS Technologies and Army Research Office Grant no. W911NF-13-1-0402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Lyons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, K., Howell, J.C. & Jordan, A.N. Noise suppression in inverse weak value-based phase detection. Quantum Stud.: Math. Found. 5, 579–588 (2018). https://doi.org/10.1007/s40509-017-0145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-017-0145-7

Keywords

Navigation