Skip to main content

Advertisement

Log in

Great morphological diversity in wild apples (Malus spp.) from a region of central Spain (Guadarrama and Ayllón mountain ranges)

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

The crab apple tree (Malus sylvestris (L.) Mill.) is a European indigenous species currently listed as endangered due to habitat fragmentation and cross back pollination with the apple tree (M. domestica Borkh.). There are some morphological studies on crab apples, but the state of that species remains unknown in Spain. The aim of this work was to describe morphologically crab apples and feral apples in mountainous areas from central Spain, to select morphological markers which better discriminate between species and to detect possible hybrids. To do so, we phenotyped a total of 355 Malus individuals from the Guadarrama and Ayllón mountain ranges and two wild populations from other Spanish regions through 68 morphological descriptors (8 in 1-year old shoots, 15 in leaves, 16 in flowers and 29 in fruits) from 2016 to 2019. We added 15 cultivated apples from the IMIDRA gene back, both traditional cultivars (9) and international references (6) to anchor our analysis. As a result, we found a high morphological diversity in the sampling area, highlighting that feral apples shown larger diversity than crab apples. In addition, no single descriptor perfectly discriminates between species, as variances in the morphological traits used to overlap. Nevertheless, pubescence, number of petals, fruit size, shape and fruit cavities deserve further research. Gene flux may exist in the area and could be responsible to such overlap, because the 25% of the feral trees and the 21% of crab apple trees shown intermediate shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable (references in Material and Methods).

References

  • Aedo, C., & Morales, R. (2013). La especie del año. El manzano silvestre (Malus sylvestris (L.) Mill.). In Catálogo 2013–2014 del Proyecto Forestal Ibérica. Catálogo 2013–2014 del Proyecto Forestal Ibérica.

  • Aedo, C., Muñoz Garmendia, F., & Navarro, C. (1998). Malus Mill. In S. Castroviejo (Ed.), Flora iberica (Vol. VI, pp. 438–441). Real Jardín Botánico.

    Google Scholar 

  • Aldrich, P. R., & Doebley, J. (1992). Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theoretical and Applied Genetics, 85(2–3), 293–302. https://doi.org/10.1007/BF00222873

    Article  CAS  PubMed  Google Scholar 

  • Arnal, A., Gogorcena, Y., Tardío, J., Roldán-Ruiz, I., & Lázaro, A. (2020). Simple sequence repeat characterisation of traditional apple cultivars (Malus domestica Borkh.) grown in the Region of Madrid (Central Spain). Plant Molecular Biology Reporter, 38(4), 676–690. https://doi.org/10.1007/s11105-020-01240-z

    Article  CAS  Google Scholar 

  • Arnal, A., Lázaro, A., & Tardío, J. (2022). A morphologic analysis confirms the presence of interesting germplasm of Malus domestica from central Spain. Genetic Resources, 3(6), 22–37. https://doi.org/10.46265/genresj.HJIF8839

    Article  Google Scholar 

  • Arrigo, N., Guadagnuolo, R., Lappe, S., Pasche, S., Parisod, C., & Felber, F. (2011). Gene flow between wheat and wild relatives: Empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis. Evolutionary Applications, 4(5), 685–695. https://doi.org/10.1111/j.1752-4571.2011.00191.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Directing flower development in Arabidopsis. The Plant Cell, 1, 37–52. https://doi.org/10.1105/tpc.19.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Božović, D., Lazović, B., Ercisli, S., Adakalić, M., Jaćimović, V., Sezer, I., & Koc, A. (2015). Morphological characterization of autochthonous apple genetic resources in Montenegro. Erwerbs-Obstbau, 58(2), 93–102. https://doi.org/10.1007/s10341-015-0260-8

    Article  Google Scholar 

  • Broich, S. L., & Palmer, R. G. (1980). A cluster analysis of wild and domesticated soybean phenotypes. Euphytica, 29(1), 23–32. https://doi.org/10.1007/BF00037246

    Article  Google Scholar 

  • Brubaker, C. L., & Wendel, J. F. (1994). Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). American Journal of Botany, 81(10), 1309–1326. https://doi.org/10.2307/2445407

    Article  Google Scholar 

  • Burgarella, C., Barnaud, A., Kane, N. A., Jankowski, F., Scarcelli, N., Billot, C., Vigouroux, Y., & Berthouly-Salazar, C. (2019). Adaptive introgression: An untapped evolutionary mechanism for crop adaptation. Frontiers in Plant Science, 10, 4. https://doi.org/10.3389/fpls.2019.00004

    Article  PubMed  PubMed Central  Google Scholar 

  • Büttner, R. (2001). Malus sylvestris (L.) Mill. In P. Hanelt (Ed.), Mansfeld’s encyclopedia of agricultural and horticultural crops (pp. 478–479). Springer.

    Google Scholar 

  • Chen, P., Li, Z., Zhang, D., Shen, W., Xie, Y., Zhang, J., Jiang, L., Li, X., Shen, X., Geng, D., Wang, L., Niu, C., Bao, C., Yan, M., Li, H., Li, C., Yan, Y., Zou, Y., Micheletti, D., & Guan, Q. (2021). Insights into the effect of human civilization on Malus evolution and domestication. Plant Biotechnology Journal, 19(11), 2206–2220. https://doi.org/10.1111/pbi.13648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Avia, K., Forler, A., Remoué, C., Venon, A., Rousselet, A., Lucas, G., Kwarteng, A. O., Rover, R. M., Guilloux, L., Belcram, H., Combes, V., Corti, H., Vazquez, S., Falque, M., Alins, G., Kirisits, T., Ursu, T. M., Roman, A., Cornille, A. (2022). Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple (Malus sylvestris (L.) Mill.), a wild relative of the cultivated apple. https://doi.org/10.1101/2022.04.09.487746

  • Coart, E., Vekemans, X., Smulders, M. J. M., Wagner, I., Van Huylenbroeck, J., Van Bockstaele, E., & Roldán-Ruiz, I. (2003). Genetic variation in the endangered Wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by AFLP and microsatellite markers. Consequences for Conservation. Molecular Ecology, 12, 845–857. https://doi.org/10.1046/j.1365-294X.2003.01778.x

    Article  CAS  Google Scholar 

  • Comunidad de Madrid. (2007). Atlas del medio ambiente en la Comunidad de Madrid (D.G. Promoción y Disciplina Ambiental (ed.)). Consejería de Medio Ambiente y Ordenación del Territorio. https://www.comunidad.madrid/publicacion/1354376759836

  • Comunidad de Madrid. (2012). Catálogo Regional de Especies Amenazadas y de Árboles Singulares (Consejería de Medio Ambiente y Ordenación del Territorio. Comunidad de Madrid (ed.)). Secretaría General Técnica.

  • Cornille, A., Feurtey, A., Gélin, U., Ropars, J., Misvanderbrugge, K., Gladieux, P., & Giraud, T. (2015). Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: A basis for conservation and breeding programs in apples. Evolutionary Applications, 8(4), 373–384. https://doi.org/10.1111/eva.12250

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornille, A., Gladieux, P., & Giraud, T. (2013). Crop-to-wild gene flow and spatial genetic structure in the closest wild relatives of the cultivated apple. Evolutionary Applications, 6(5), 737–748. https://doi.org/10.1111/eva.12059

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornille, A., Gladieux, P., Smulders, M. J. M., Roldán-Ruiz, I., Laurens, F., Le Cam, B., Nersesyan, A., Clavel, J., Olonova, M., Feugey, L., Gabrielyan, I., Zhang, X. G., Tenaillon, M. I., & Giraud, T. (2012). New insight into the history of domesticated apple: Secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1002703

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornille, A., Giraud, T., Smulders, M. J. M., Roldán-Ruiz, I., & Gladieux, P. (2014). The domestication and evolutionary ecology of apples. Trends in Genetics, 30(2), 57–65. https://doi.org/10.1016/j.tig.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  • Corrado, G., & Rao, R. (2017). Towards the genomic basis of local adaptation in landraces. Diversity, 9(4), 51. https://doi.org/10.3390/d9040051

    Article  CAS  Google Scholar 

  • Currie, A. J., Ganeshanandam, S., Noiton, D. A. M., Garrick, D., Shelbourne, C. J. A., & Oraguzie, N. C. (2000). Quantitative evaluation of apple (Malus × domestica Borkh.) fruit shape by principal component analysis of fourier descriptors. Euphytica, 111(3), 219–227.

    Article  Google Scholar 

  • Dar, J. A., Wani, A. A., & Dhar, M. K. (2015). Morphological, biochemical and male-meiotic characterization of apple (Malus × domestica Borkh.) germplasm of Kashmir Valley. Chromosome Botany, 10(2), 39–49. https://doi.org/10.3199/iscb.10

    Article  Google Scholar 

  • De Mendiburu, F. (2019). Statistical procedures for agricultural research. Package “agricolae.”

  • Dolker, T., Kumar, D., Chandel, J. S., Angmo, S., Chaurasia, O. P., & Stobdan, T. (2021). Phenological and pomological characteristics of native apple (Malus domestica borkh.) cultivars of trans-himalayan ladakh India. Defence Life Science Journal, 6(1), 64–69. https://doi.org/10.14429/dlsj.6.15726

    Article  Google Scholar 

  • Dorado, O., Rieseberg, L. H., & Arias, D. M. (1992). Chloroplast DNA introgression in southern California sunflowers. Evolution, 46(2), 566–572. https://doi.org/10.1111/j.1558-5646.1992.tb02061.x

    Article  PubMed  Google Scholar 

  • Dzhangaliev, A. D. (2003). The wild apple tree of Kazakhstan. In J. Janick (Ed.), Horticultural reviews wild apple and fruit trees of central Asia (Vol. 29, pp. 63–303). John Wiley.

    Google Scholar 

  • Ebrahimi, A., & Alipour, H. (2020). Screening of wild superior apple genotypes in north and northeast of Iran using multivariate analysis. Euphytica, 216(9), 136. https://doi.org/10.1007/s10681-020-02672-0

    Article  CAS  Google Scholar 

  • Ellstrand, N. C., Prentice, H. C., & Hancock, J. F. (1999). Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology, Evolution, and Systematics, 30, 539–563.

    Article  Google Scholar 

  • Feurtey, A., Cornille, A., Shykoff, J. A., Snirc, A., & Giraud, T. (2017). Crop-to-wild gene flow and its fitness consequences for a wild fruit tree: Towards a comprehensive conservation strategy of the wild apple in Europe. Evolutionary Applications, 10(2), 180–188. https://doi.org/10.1111/eva.12441

    Article  PubMed  Google Scholar 

  • Forte, A. V., Ignatov, A. N., Ponomarenki, V. V., Dorokhov, D. B., & Savelyev, N. I. (2002). Phylogeny of the Malus (Apple Tree) species, inferred from the morphological traits and molecular DNA analysis. Russian Journal of Genetics, 38(10), 1357–1369.

    Article  CAS  Google Scholar 

  • Freyre, R., Ríos, R., Guzmán, L., Debouck, D. G., & Gepts, P. (1996). Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Economic Botany, 50(2), 195–215.

    Article  Google Scholar 

  • Gaši, F., Šimon, S., Pojskić, N., Kurtović, M., & Pejić, I. (2011). Analysis of morphological variability in Bosnia and Herzegovina’s autochthonous apple germplasm. Journal of Food, Agriculture and Environment, 9(3–4), 444–448. https://doi.org/10.1234/4.2011.2301

    Article  Google Scholar 

  • Greaves, E. (2022). Impacts of hybridization on native crabapple (Malus coronaria) by domestic apple (Malus domestica) in southern Ontario. In MSc Thesis Dissertation. Department of Integrative Biology. University of Guelph, Guelph, Ontario.

  • Harris, S. A., Robinson, J. P., & Juniper, B. E. (2002). Genetic clues to the origin of the apple. Trends in Genetics, 18(8), 426–430.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, S., Bhat, K. M., Dar, Z. A., Mir, M. A., Pandith, A. H., Wani, W. M., & Jan, A. (2017). Morphological characterization of apple accessions in Kashmir region. Plant Archives, 17(2), 1071–1077.

    Google Scholar 

  • Hias, N., Leus, L., Davey, M. W., Vanderzande, S., Van Huylenbroeck, J., & Keulemans, J. (2017). Effect of polyploidization on morphology in two apple (Malus × domestica) genotypes. Horticultural Science, 44(2), 55–63. https://doi.org/10.17221/7/2016-HORTSCI

    Article  CAS  Google Scholar 

  • Höfer, M., Eldin Ali, M. A. M. S., Sellmann, J., & Peil, A. (2014). Phenotypic evaluation and characterization of a collection of Malus species. Genetic Resources and Crop Evolution, 61(5), 943–964. https://doi.org/10.1007/s10722-014-0088-3

    Article  Google Scholar 

  • Höfer, M., Flachowsky, H., Hanke, M. V., Semënov, V., Šlâvas, A., Bandurko, I., Sorokin, A., & Alexanian, S. (2013). Assessment of phenotypic variation of Malus orientalis in the North Caucasus region. Genetic Resources and Crop Evolution, 60(4), 1463–1477. https://doi.org/10.1007/s10722-012-9935-2

    Article  Google Scholar 

  • IBPGR. (1982). Descriptor list for Apple (Malus). In R. Watkins & R. A. Smith (Eds.), Commission of European Communities: Committee on Disease Resistane Breeding and use of Genebanks (Reprinted). CEC Secretariat.

    Google Scholar 

  • Jacques, D., Vandermijnsbrugge, K., Lemaire, S., Antofie, A., & Lateur, M. (2009). Natural distribution and variability of wild apple (Malus sylvestris) in Belgium. Belgium Journal of Botany, 142(1), 39–49.

    Google Scholar 

  • Janick, J., Cummins, J. N., Brown, S. K., & Hemmat, M. (1996). Apples. In J. Janick & J. N. Moore (Eds.), Fruit breeding, tree and tropical fruits. (pp. 1–78).

  • Jensen, J. S., Olrik, D. C., Siegismund, H. R., & Lowe, A. J. (2003). Population genetics and spatial autocorrelation in an unmanaged stand of Quercus petraea in Denmark. Scandinavian Journal of Forest Research, 18(4), 295–304. https://doi.org/10.1080/02827580310005072

    Article  Google Scholar 

  • Khadivi, A., Mirheidari, F., Moradi, Y., & Paryan, S. (2020). Malus orientalis Uglitzk., an important genetic resource to improve domestic apples: characterization and selection of the promising accessions. Euphytica, 216(12), 1–21. https://doi.org/10.1007/s10681-020-02720-9

    Article  CAS  Google Scholar 

  • Kišek, M., Jarni, K., & Brus, R. (2021). Hybridisation of Malus sylvestris (L.) Mill with Malus × domestica Borkh. and implications for the production of forest reproductive material. Forests, 12(3), 367. https://doi.org/10.3390/f12030367

    Article  Google Scholar 

  • König, H. J., Kiffner, C., Kramer-Schadt, S., Fürst, C., Keuling, O., & Ford, A. T. (2020). Human–wildlife coexistence in a changing world. Conservation Biology, 34(4), 786–794. https://doi.org/10.1111/cobi.13513

    Article  PubMed  Google Scholar 

  • Koutecký, P. (2015). MorphoTools: A set of R functions for morphometric analysis. Plant Systematics and Evolution, 301(4), 1115–1121. https://doi.org/10.1007/s00606-014-1153-2

    Article  Google Scholar 

  • Kremer, B. P. (1993). Frutos silvestres. Bayas, aquenios y drupas. Hispano Europea.

    Google Scholar 

  • Kumar, C., Singh, S. K., Pramanick, K. K., Verma, M. K., Srivastav, M., Singh, R., Bharadwaj, C., & Naga, K. C. (2018). Morphological and biochemical diversity among the Malus species including indigenous Himalayan wild apples. Scientia Horticulturae, 233, 204–219. https://doi.org/10.1016/j.scienta.2018.01.037

    Article  CAS  Google Scholar 

  • Larsen, A. S., Asmussen, C. B., Coart, E., Olrik, D. C., & Kjær, E. D. (2006). Hybridization and genetic variation in Danish populations of European crab apple (Malus sylvestris). Tree Genetics & Genomes, 2(2), 86–97. https://doi.org/10.1007/s11295-005-0030-0

    Article  Google Scholar 

  • Larsen, B., Ørgaard, M., Toldam-Andersen, T. B., & Pedersen, C. (2016). A high-throughput method for genotyping S-RNase alleles in apple. Molecular Breeding, 36(3), 24. https://doi.org/10.1007/s11032-016-0448-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J. C., Dong, S. L., Zhi, P. S., Hak, S. S., & Lu, B. R. (2004). Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany, 93(1), 67–73. https://doi.org/10.1093/aob/mch006

    Article  CAS  Google Scholar 

  • Love, S. L. (1994). Ecological risk of growing transgenic potatoes in the United States and Canada. American Potato Journal, 71(10), 647–658. https://doi.org/10.1007/BF02851433

    Article  Google Scholar 

  • Mclaughlin, A., & Mineau, P. (1995). The impact of agricultural practices on biodiversity. Agriculture. Ecosystems and Environment, 55, 201–212.

    Article  Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321–3323.

    Article  CAS  Google Scholar 

  • Nielsen, J., & Olrik, D. C. (2001). A morphometric analysis of Prunus spinosa, P. domestica ssp. insititia, and their putative hybrids in Denmark. Nordic Journal of Botany, 21, 349–363.

    Article  Google Scholar 

  • Omasheva, M. Y., Flachowsky, H., Ryabushkina, N. A., Pozharskiy, A. S., Galiakparov, N. N., & Hanke, M. V. (2017). To what extent do wild apples in Kazakhstan retain their genetic integrity? Tree Genetics and Genomes, 13(3), 1–12. https://doi.org/10.1007/s11295-017-1134-z

    Article  Google Scholar 

  • Paganová, V. (2018). Taxonomic reliability of leaf and fruit morphological characteristics of the Pyrus L. taxa in Slovakia. Horticultural Science, 30(3), 98–107. https://doi.org/10.17221/3869-hortsci

    Article  Google Scholar 

  • Pereira-Lorenzo, S., Fischer, M., Ramos-Cabrer, A. M., & Castro, I. (2018). Apple (Malus spp.) breeding: Present and future. In J. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Fruits (pp. 3–29). Springer International Publishing.

    Chapter  Google Scholar 

  • Pérez-Romero, L. F., Suárez, M. P., Dapena, E., & Rallo, P. (2015). Molecular and morphological characterization of local apple cultivars in southern Spain. Genetics and Molecular Research, 14(1), 1487–1501. https://doi.org/10.4238/2015.February.20.4

    Article  CAS  PubMed  Google Scholar 

  • Preston, D. J. (1982). Impacts of Agriculture in Wild Life. http://www.adfg.alaska.gov/static/home/library/pdfs/wildlife/research_pdfs/82_agr_impacts_preston.pdf

  • R Studio Team. (2016). R Studio: Integrated Development for R. RStudio, Inc. http://www.rstudio.com

  • Reim, S., Proft, A., Heinz, S., & Höfer, M. (2012). Diversity of the European indigenous wild apple Malus sylvestris (L.) Mill. in the East Ore Mountains (Osterzgebirge), Germany: I. Morphological characterization. Genetic Resources and Crop Evolution, 59(6), 1101–1114. https://doi.org/10.1007/s10722-011-9746-x

    Article  Google Scholar 

  • Reim, S., Höltken, A., & Höfer, M. (2013). Diversity of the European indigenous wild apple (Malus sylvestris (L.) Mill.) in the East Ore Mountains (Osterzgebirge), Germany: II. Genetic characterization. Genetic Resources and Crop Evolution, 60(3), 879–892. https://doi.org/10.1007/s10722-012-9885-8

    Article  Google Scholar 

  • Reim, S., Lochschmidt, F., Proft, A., & Höfer, M. (2020). Genetic integrity is still maintained in natural populations of the indigenous wild apple species Malus sylvestris (Mill.) in Saxony as demonstrated with nuclear SSR and chloroplast DNA markers. Ecology and Evolution, 10, 1–12. https://doi.org/10.1002/ece3.6818

    Article  Google Scholar 

  • Robinson, J. P., Harris, S. A., & Juniper, B. E. (2001). Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple. Malus Domestica Borkh Plant Systematics and Evolution, 226(1–2), 35–58.

    Article  CAS  Google Scholar 

  • Rojas-Barrera, I. C., Wegier, A., De Jesús Sánchez, G. J., Owens, G. L., Rieseberg, L. H., & Piñero, D. (2019). Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21302–21311. https://doi.org/10.1073/pnas.1817664116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhsam, M., Jessop, W., Cornille, A., Renny, J., & Worrell, R. (2018). Crop-to-wild introgression in the European wild apple Malus sylvestris in Northern Britain. Forestry an International Journal of Forest Research, 2018, 1–12. https://doi.org/10.1093/forestry/cpy033

    Article  Google Scholar 

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzler, A., Arnold, C., Cornille, A., Bachmann, O., & Schnitzler, C. (2014). Wild European apple (Malus sylvestris (L.) Mill.) population dynamics: Insight from genetics and ecology in the rhine valley. Priorities for a future conservation programme. PLoS ONE, 9(5), e96596. https://doi.org/10.1371/journal.pone.0096596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., & Sommer, H. (1990). Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 250(4983), 931–936. https://doi.org/10.1126/science.250.4983.931

    Article  CAS  PubMed  Google Scholar 

  • Shen, T., Han, M., Liu, Q., Yang, C., Meng, J., & Li, H. (2021). Pigment profile and gene analysis revealed the reasons of petal color difference of crabapples. Brazilian Journal of Botany, 44(2), 287–296. https://doi.org/10.1007/s40415-020-00682-9

    Article  Google Scholar 

  • SIAR. (2019). Sistema de Información Agroclimática para el Regadío (SIAR). Datos climáticos de Arganda del Rey (2004–2019). Sistema de Información Agroclimática para el Regadío. http://www.siar.es

  • Smart-hydro. (2015). Caracterización del medio físico. In Proyecto Smart-hydro.

  • Sokal, R. R., & Michener, C. D. (1958). A statistical methods for evaluating relationships. University of Kansas Science Bulletin, 38, 1409–1448.

    Google Scholar 

  • Spengler, R. N. (2019). Origins of the apple: The role of megafaunal mutualism in the domestication of Malus and rosaceous trees. Frontiers in Plant Science, 10, 617. https://doi.org/10.3389/fpls.2019.00617

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephan, B. R., Wagner, I., & Kleinschmit, J. (2003). EUFORGEN Technical Guidelines for genetic conservation and use for Wild apple and pear (Malus sylvestris and Pyrus pyraster). Euforgen International Plant Genetic Resources Institute.

  • Stoenescu, A.-M., & Cosmulescu, S. N. (2022). Some morphological characteristics of fruits and leaves of Malus sylvestris (L.) Mill. genotypes from southern Oltenia. Pakistan Journal of Botany. https://doi.org/10.30848/PJB2022-2(44)

    Article  Google Scholar 

  • Terpó, A. (1981). Malus Mill. In T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, & D. A. Webb (Eds.), Flora Europaea (Vol. 2, pp. 66–67). Cambridge. https://doi.org/10.1017/S0030605300014939

  • Todesco, M., Pascual, M. A., Owens, G. L., Ostevik, K. L., Moyers, B. T., Hübner, S., Heredia, S. M., Hahn, M. A., Caseys, C., Bock, D. G., & Rieseberg, L. H. (2016). Hybridization and extinction. Evolutionary Applications, 9(7), 892–908. https://doi.org/10.1111/eva.12367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchiano, M. (2018). Efficient effect size computation. Package “effsize.”

  • Triest, L., de Greef, B., de Bondt, R., & van Slycken, J. (1999). RAPD of controlled crosses and clones from the field suggests that hybrids are rare in the Salix albaSalix fragilis complex. Heredity, 84, 555–563.

    Article  Google Scholar 

  • UPOV. (2005). Apple (Malus domestica Borkh.) guidelines.

  • Urbina, V., & Dalmases, J. (2014). Guía de caracterización de las accesiones de manzano (pp. 1–28). Universitat de Lleida.

  • Urrestarazu, J., Miranda, C., Santesteban, L. G., & Royo, J. B. (2012). Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genetics & Genomes, 8(6), 1163–1180. https://doi.org/10.1007/s11295-012-0502-y

    Article  Google Scholar 

  • Vaarama, A. (1948). Meiosis and polyploid characters in the tetraploid apple variety “Hibernal.” Hereditas, 34(1–2), 147–160.

    Google Scholar 

  • Vanden Broeck, A., Villar, M., van Bockstaele, E., Vanslycken, J., Van Bockstaele, E., & Van Slycken, J. (2005). Natural hybridization between cultivated poplars and their wild relatives: Evidence and consequences for native poplar populations. Annals of Forest Science, 62(7), 601–613. https://doi.org/10.1051/forest:2005072

    Article  Google Scholar 

  • Voltas, J., Pemán, J., & Fusté, F. (2007). Phenotypic diversity and delimitation between wild and cultivated forms of the genus Pyrus in North-eastern Spain based on morphometric analyses. Genetic Resources and Crop Evolution, 54(7), 1473–1487. https://doi.org/10.1007/s10722-006-9136-y

    Article  Google Scholar 

  • Von Rochow, M. V. (1969). Fruit size variability of Swiss prehistoric Malus sylvestris. In P. J. Ucko & G. W. Dimbleby (Eds.), The domestication and exploitation of plants and animals (pp. 201–206). Aldine Publishing Company.

    Google Scholar 

  • Wagner, I., Maurer, W. D., Lemmen, P., Schmitt, H. P., Wagner, M., Binder, M., & Patzak, P. (2014). Hybridization and genetic diversity in wild apple (Malus sylvestris (L.) Mill.) from various regions in Germany and from Luxembourg. Silvae Genetica, 63(3), 81–94. https://doi.org/10.1515/sg-2014-0012

    Article  Google Scholar 

  • Wagner, I. (1996). Zusammenstellung morphologischer Merkmale und ihrer Ausprägungen zur Unterscheidung von Wild- und Kulturformen des Apfel- (Malus) und des Birnbaumes (Pyrus). Mitteilungen Der Deutschen Dendrologischen. Gesellschaft, 82, 87–108.

    Google Scholar 

  • Zhou, T., Fan, J., Zhao, M., Zhang, D., Li, Q., Wang, G., Zhang, W., & Cao, F. (2019). Phenotypic variation of floral organs in Malus using frequency distribution functions. BMC Plant Biology, 19(1), 574. https://doi.org/10.1186/s12870-019-2155-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary, D. (1997). Wild apples and wild pears. Bocconea, 7, 409–416.

    Google Scholar 

Download references

Acknowledgements

A. Arnal is very grateful with those professionals and the inhabitants from the rural areas that helped him in the location and sampling of the trees analysed in this research.

Funding

This research was supported by the research projects FP16-ETNOB and FP17-MZ, both funded from the government of Comunidad de Madrid (Spain). A. Arnal predoctoral contract was funded by the National Institute for Agricultural and Food Research and Technology (FPI-INIA 2015).

Author information

Authors and Affiliations

Authors

Contributions

AA, JT and AL designed the research. AA sampled the accessions, performed the research, analysed the data and wrote the manuscript. All authors contributed in its revision.

Corresponding author

Correspondence to Alberto Arnal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnal, A., Lázaro, A. & Tardío, J. Great morphological diversity in wild apples (Malus spp.) from a region of central Spain (Guadarrama and Ayllón mountain ranges). Plant Physiol. Rep. 28, 124–141 (2023). https://doi.org/10.1007/s40502-023-00712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00712-0

Keywords

Navigation