Skip to main content

Advertisement

Log in

Epigenetics and transgenerational memory in plants under heat stress

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

The concept that plants are cognitive and intelligent organisms capable of learning and retaining memory may sound alien to most plant scientists mainly because of the paucity of literature in the subject and also due to the complexity of the subject. Plants are sessile organisms and so have intricate physiological, biochemical and molecular mechanisms by which they react to abiotic stress and it is possible that epigenetics has an important role in response to stress stimuli in plants. Heat stress is a consequence of the changing climate now and can affect plant growth and productivity in agriculture crops. Heat stress induced epigenetic modifications caused by DNA methylation, histone restructuring, chromatin remodeling is known to induct memory in plants that can be retained in future generations to counter heat stress effectively. Expression of genes to a large extant are influenced by the chromatin environment and there are states of chromatin dynamics that can dictate the specific genes that are stress responsive for resultant adaptation to heat stress. In this minireview we will discuss on transgenerational memory and the regulation of responses to heat by epigenetic modifications such as DNA methylation, modifications and variations in histones and histone chaperones, chromatin remodeling, small RNA and long noncoding RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banerjee, A., Wani, S. H., & Roychoudhury, A. (2017). Epigenetic control of plant cold responses. Frontiers in Plant Science, 8, 1643.

    PubMed  PubMed Central  Google Scholar 

  • Begcy, K., & Dresselhaus, T. (2018). Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reproduction, 31(4), 343–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhanu, B. D., Ulaganathan, K., & Shanker, A. K. (2020). Water Stress Responsive Differential Methylation of Organellar Genomes of Zea mays Z59. American Journal of Plant Sciences, 11(07), 1077.

    CAS  Google Scholar 

  • Bilichak, A., Ilnytskyy, Y., Wóycicki, R., Kepeshchuk, N., Fogen, D., & Kovalchuk, I. (2015). The elucidation of stress memory inheritance in Brassica rapa plants. Frontiers in Plant Science, 6, 5.

    PubMed  PubMed Central  Google Scholar 

  • Bilichak, A., & Kovalchuk, I. (2016). Transgenerational response to stress in plants and its application for breeding. Journal of Experimental Botany, 67(7), 2081–2092.

    CAS  PubMed  Google Scholar 

  • Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.

    PubMed  PubMed Central  Google Scholar 

  • Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., Ilnytskyy, Y., et al. (2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE, 5(3), 9514.

    Google Scholar 

  • Brzezinka, K., Altmann, S., & Bäurle, I. (2019). BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory. Plant, Cell & Environment, 42(3), 771–781.

    CAS  Google Scholar 

  • Byeon, B., Bilichak, A., & Kovalchuk, I. (2019). Transgenerational response to heat stress in the form of differential expression of noncoding RNA fragments in Brassica rapa plants. The Plant Genome, 12(1), 1–12.

    Google Scholar 

  • Centomani, I., Sgobba, A., D’Addabbo, P., Dipierro, N., Paradiso, A., De Gara, L., et al. (2015). Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma, 252(6), 1451–1459.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Müller, F., Rieu, I., & Winter, P. (2016). Epigenetic events in plant male germ cell heat stress responses. Plant Reproduction, 29(1–2), 21–29.

    CAS  PubMed  Google Scholar 

  • Chovancek, E., Zivcak, M., Botyanszka, L., Hauptvogel, P., Yang, X., Misheva, S., et al. (2019). Transient heat waves may affect the photosynthetic capacity of susceptible wheat genotypes due to insufficient photosystem I photoprotection. Plants, 8(8), 282.

    CAS  PubMed Central  Google Scholar 

  • Cosentino, S. L., Sanzone, E., Testa, G., Patanè, C., Anastasi, U., & Scordia, D. (2019). Does post-anthesis heat stress affect plant phenology, physiology, grain yield and protein content of durum wheat in a semi-arid Mediterranean environment? Journal of Agronomy and Crop Science, 205(3), 309–323.

    CAS  Google Scholar 

  • Dong, W., Gao, T., Wang, Q., Chen, J., Lv, J., & Song, Y. (2020). Salinity stress induces epigenetic alterations to the promoter of MsMYB4 encoding a salt-induced MYB transcription factor. Plant Physiology and Biochemistry, 155, 709–715.

    CAS  PubMed  Google Scholar 

  • Dwivedi, S. K., Basu, S., Kumar, S., Kumari, S., Kumar, A., Jha, S., et al. (2019). Enhanced antioxidant enzyme activities in developing anther contributes to heat stress alleviation and sustains grain yield in wheat. Functional Plant Biology, 46(12), 1090–1102.

    CAS  PubMed  Google Scholar 

  • Feng, B., Zhang, C., Chen, T., Zhang, X., Tao, L., & Fu, G. (2018). Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC Plant Biology, 18(1), 1–16.

    Google Scholar 

  • Fragkostefanakis, S., Simm, S., El-Shershaby, A., Hu, Y., Bublak, D., Mesihovic, A., et al. (2019). The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato. Plant, Cell & Environment, 42(3), 874–890.

    CAS  Google Scholar 

  • Gao, G., Li, J., Li, H., Li, F., Xu, K., Yan, G., et al. (2014). Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breeding Science, 64(2), 125–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser, S. M. (2016). Selfish DNA and epigenetic repression revisited. Genetics, 204(3), 837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giri, A., Heckathorn, S., Mishra, S., & Krause, C. (2017). Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plants, 6(1), 6.

    PubMed Central  Google Scholar 

  • Grant-Downton, R., & Dickinson, H. G. (2005). Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Annals of Botany, 96(7), 1143–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han, D., Chen, C., Xia, S., Liu, J., Shu, J., Nguyen, V., Lai, J., Cui, Y., & Yang, C. (2020). Chromatin-associated SUMOylation controls the transcriptional switch between plant development and heat stress responses. Plant Communications, 100091. https://doi.org/https://doi.org/10.1016/j.xplc.2020.100091.

  • Harkess, A. (2018). Handling the heat-methylome variation underlying heat tolerance in cotton. The Plant Cell, 30(9), 1947–1948.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He, X., Guo, S., Wang, Y., Wang, L., Shu, S., & Sun, J. (2020). Systematic identification and analysis of heat-stress-responsive lncRNAs, circRNAs and miRNAs with associated co-expression and ceRNA networks in cucumber (Cucumis sativus L.). Physiologia Plantarum, 168(3), 736–754.

    CAS  PubMed  Google Scholar 

  • Hou, H., Zhao, L., Zheng, X., Gautam, M., Yue, M., Hou, J., et al. (2019). Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings. Protoplasma, 256(5), 1245–1256.

    CAS  PubMed  Google Scholar 

  • Huang, L. J., Cheng, G. X., Khan, A., Wei, A. M., Yu, Q. H., Yang, S. B., et al. (2019). CaHSP16. 4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. Protoplasma, 256(1), 39–51.

    CAS  PubMed  Google Scholar 

  • Huang, R., Liu, Z., Xing, M., Yang, Y., Wu, X., Liu, H., & Liang, W. (2019). Heat stress suppresses Brassica napus seed oil accumulation by inhibition of photosynthesis and BnWRI1 pathway. Plant and Cell Physiology, 60(7), 1457–1470.

    CAS  PubMed  Google Scholar 

  • IPCC (2018): Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp.

  • Lamelas, L., Valledor, L., Escandón, M., Pinto, G., Cañal, M. J., & Meijón, M. (2020). Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming coupled to epigenetic regulation. Journal of Experimental Botany, 71(6), 2040–2057.

    CAS  PubMed  Google Scholar 

  • Laubach, Z. M., Perng, W., Dolinoy, D. C., Faulk, C. D., Holekamp, K. E., & Getty, T. (2018). Epigenetics and the maintenance of developmental plasticity: Extending the signalling theory framework. Biological Reviews, 93(3), 1323–1338.

    PubMed  Google Scholar 

  • Li, J., Huang, Q., Sun, M., Zhang, T., Li, H., Chen, B., et al. (2016). Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas. Scientific Reports, 6, 38401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Yang, D. L., Huang, H., Zhang, G., He, L., Pang, J., et al. (2020). Epigenetic memory marks determine epiallele stability at loci targeted by de novo DNA methylation. Nature Plants, 6(6), 661–674.

    CAS  PubMed  Google Scholar 

  • Liu, H., Able, A. J., & Able, J. A. (2020). Transgenerational effects of water-deficit and heat stress on germination and seedling Vigour—New insights from durum wheat microRNAs. Plants, 9(2), 189.

    CAS  PubMed Central  Google Scholar 

  • Liu, J., Feng, L., Gu, X., Deng, X., Qiu, Q., Li, Q., et al. (2019). An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research, 29(5), 379–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Feng, L., Li, J., & He, Z. (2015). Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science, 6, 267.

    PubMed  PubMed Central  Google Scholar 

  • Liu, G., Xia, Y., Liu, T., Dai, S., & Hou, X. (2018). The DNA methylome and association of differentially methylated regions with differential gene expression during heat stress in Brassica rapa. International Journal of Molecular Sciences, 19(5), 1414.

    PubMed Central  Google Scholar 

  • Luciani, E., Palliotti, A., Frioni, T., Tombesi, S., Villa, F., Zadra, C., & Farinelli, D. (2020). Kaolin treatments on Tonda Giffoni hazelnut (Corylus avellana L.) for the control of heat stress damages. Scientia Horticulturae, 263, 109097.

    CAS  Google Scholar 

  • Makonya, G. M., Ogola, J. B., Muasya, A. M., Crespo, O., Maseko, S., Valentine, A. J., et al. (2019). Chlorophyll fluorescence and carbohydrate concentration as field selection traits for heat tolerant chickpea genotypes. Plant Physiology and Biochemistry, 141, 172–182.

    CAS  PubMed  Google Scholar 

  • Mesihovic, A., Iannacone, R., Firon, N., & Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reproduction, 29(1–2), 93–105.

    CAS  PubMed  Google Scholar 

  • Mozgova, I., Mikulski, P., Pecinka, A., & Farrona, S. (2019). Epigenetic mechanisms of abiotic stress response and memory in plants. In R. Alvarez-Venegas, C. De-la-Pena & J. Casas-Mollano (eds), Epigenetics in plants of agronomic importance: Fundamentals and applications (pp. 1–64). Springer, Cham.

  • Nguyen, H. M., Kim, M., Ralph, P. J., Marín-Guirao, L., Pernice, M., & Procaccini, G. (2020). Stress memory in seagrasses: First insight into the effects of thermal priming and the role of epigenetic modifications. Frontiers in Plant Science, 11, 494.

    PubMed  PubMed Central  Google Scholar 

  • Niskanen, E. A., & Palvimo, J. J. (2017). Chromatin SUMOylation in heat stress: To protect, pause and organise? SUMO stress response on chromatin. BioEssays, 39(6), 1600263.

    Google Scholar 

  • Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in Plant Science, 22(1), 53–65.

    CAS  PubMed  Google Scholar 

  • Oyoshi, K., Katano, K., Yunose, M., & Suzuki, N. (2020). Memory of 5-min heat stress in Arabidopsis thaliana. Plant Signaling & Behavior, 15(8), 1778919.

    Google Scholar 

  • Pfluger, J., & Wagner, D. (2007). Histone modifications and dynamic regulation of genome accessibility in plants. Current Opinion in Plant Biology, 10(6), 645–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priya, M., Dhanker, O. P., Siddique, K. H., Hanumantha Rao, B., Nair, R. M., Pandey, S., et al. (2019). Drought and heat stress-related proteins: An update about their functional relevance in imparting stress tolerance in agricultural crops. Theoretical and Applied Genetics, 132, 1607–1638.

    PubMed  Google Scholar 

  • Qian, Y., Hu, W., Liao, J., Zhang, J., & Ren, Q. (2019). The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochemical and Biophysical Research Communications, 512(4), 742–749.

    CAS  PubMed  Google Scholar 

  • Queitsch, C., Sangster, T. A., & Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic variation. Nature, 417(6889), 618–624.

    CAS  PubMed  Google Scholar 

  • Rai, R. (2020). Heat stress in crops: Driver of climate change impacting global food supply. In: P. Singh, R. Singh & V. Srivastava (eds) Contemporary environmental issues and challenges in era of climate change (pp. 99–117). Springer, Singapore.

  • Raja, M. M., Vijayalakshmi, G., Naik, M. L., Basha, P. O., Sergeant, K., Hausman, J. F., & Khan, P. S. S. V. (2019). Pollen development and function under heat stress: From effects to responses. Acta Physiologiae Plantarum, 41(4), 47.

    Google Scholar 

  • Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M., & Cloutier, S. (2019). MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics, 20(1), 488.

    PubMed  PubMed Central  Google Scholar 

  • Ruehr, N. K., Grote, R., Mayr, S., & Arneth, A. (2019). Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiology, 39(8), 1285–1299.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samakovli, D., Ticha, T., Vavrdova, T., Ovecka, M., Luptovciak, I., Zapletalova, V., et al. (2020). YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis. Molecular Plant, 13(4), 612–633.

    CAS  PubMed  Google Scholar 

  • Setsungnern, A., Muñoz, P., Pérez-Llorca, M., Müller, M., Thiravetyan, P., & Munné-Bosch, S. (2020). A defect in BRI1-EMS-SUPPRESSOR 1 (BES1)-mediated brassinosteroid signaling increases photoinhibition and photo-oxidative stress during heat stress acclimation in Arabidopsis. Plant Science, 110470. https://doi.org/10.1016/j.plantsci.2020.110470

  • Shanker, A. K, Bhanu, D., Sarkar, B., Yadav, S. K., Jyothilakshmi, N., Maheswari, M. (2020). Infra red thermography reveals transpirational cooling in pearl millet (Pennisetum glaucum) plants under heat stress. bioRxiv 2020.09.04.283283. https://doi.org/10.1101/2020.09.04.283283.

  • Sharma, L., Priya, M., Kaushal, N., Bhandhari, K., Chaudhary, S., Dhankher, O. P., et al. (2020). Plant growth-regulating molecules as thermoprotectants: Functional relevance and prospects for improving heat tolerance in food crops. Journal of Experimental Botany, 71(2), 569–594.

    CAS  PubMed  Google Scholar 

  • Shi, W., Lawas, L. M. F., Raju, B. R., & Jagadish, S. V. K. (2016). Acquired thermo-tolerance and trans-generational heat stress response at flowering in rice. Journal of Agronomy and Crop Science, 202(4), 309–319.

    CAS  Google Scholar 

  • Singroha, G., & Sharma, P. (2019). Epigenetic modifications in plants under abiotic stress. In R. Maccariello (Eds.), Epigenetics. IntechOpen.

  • Sirohi, G., Pandey, B. K., Deveshwar, P., & Giri, J. (2016). Emerging trends in epigenetic regulation of nutrient deficiency response in plants. Molecular Biotechnology, 58(3), 159–171.

    CAS  PubMed  Google Scholar 

  • Sudan, J., Raina, M., & Singh, R. (2018). Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech, 8(3), 172.

    PubMed  PubMed Central  Google Scholar 

  • Sun, L., Jing, Y., Liu, X., Li, Q., Xue, Z., Cheng, Z., et al. (2020). Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nature Communications, 11(1), 1–13.

    Google Scholar 

  • Suter, L., & Widmer, A. (2013). Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS ONE, 8(4), e60364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thirumalaikumar, V. P., Gorka, M., Schulz, K., Masclaux-Daubresse, C., Sampathkumar, A., Skirycz, A., Vierstra, R. D., & Balazadeh, S. (2020). Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90 and ROF1. Autophagy, 1–16. https://doi.org/10.1080/15548627.2020.1820778.

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223.

    Google Scholar 

  • Wang, Q. L., Chen, J. H., He, N. Y., & Guo, F. Q. (2018). Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Sciences, 19(3), 849.

    PubMed Central  Google Scholar 

  • Wang, X., Xin, C., Cai, J., Zhou, Q., Dai, T., Cao, W., & Jiang, D. (2016). Heat priming induces trans-generational tolerance to high temperature stress in wheat. Frontiers in plant Science, 7, 501.

    PubMed  PubMed Central  Google Scholar 

  • Wassie, M., Zhang, W., Zhang, Q., Ji, K., Cao, L., & Chen, L. (2020). Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicology and Environmental Safety, 191, 110206.

    CAS  PubMed  Google Scholar 

  • Xu, J., Zheng, Y., Pu, S., Zhang, X., Li, Z., & Chen, J. (2020). Third-generation sequencing found LncRNA associated with heat shock protein response to heat stress in Populus qiongdaoensis seedlings. BMC Genomics, 21(1), 1–14.

    Google Scholar 

  • Yamaguchi, N., Matsubara, S., Yoshimizu, K., Seki, M., Hamada, K., Kamitani, M., et al. (2020). Removal of repressive histone marks creates epigenetic memory of recurring heat in Arabidopsis. BioRxiv. https://doi.org/10.1101/2020.05.10.086611.

    Article  Google Scholar 

  • Zabinsky, R. A., Mason, G. A., Queitsch, C., & Jarosz, D. F. (2019). It’s not magic–Hsp90 and its effects on genetic and epigenetic variation. Seminars in Cell & Developmental Biology, 88, 21–35.

    CAS  Google Scholar 

  • Zhang, H., Lang, Z., & Zhu, J. K. (2018). Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 19(8), 489–506.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Li, G., Chen, T., Feng, B., Fu, W., Yan, J., et al. (2018). Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 11(1), 1–12.

    Google Scholar 

  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., et al. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35), 9326–9331.

    CAS  Google Scholar 

  • Zhou, R., Kong, L., Yu, X., Ottosen, C. O., Zhao, T., Jiang, F., & Wu, Z. (2019). Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiologiae Plantarum, 41(2), 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maheswari.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanker, A.K., Bhanu, D. & Maheswari, M. Epigenetics and transgenerational memory in plants under heat stress. Plant Physiol. Rep. 25, 583–593 (2020). https://doi.org/10.1007/s40502-020-00557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-020-00557-x

Keywords

Navigation