Skip to main content
Log in

Interplant communication via hyphal networks

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Plant are connected via hyphal networks which distribute nutrients, reduced carbon from photosynthesis as well as information within the plant community. I describe our current knowledge about these common mycelial networks, and address open questions that need to be answered to understand their role in ecosystems, pest management and sustainable agriculture. Besides numerous models describing the belowground interplant communication, only a little is known about the molecular basis and structural requirements for information transfer. However, established and novel model systems may provide a link between scientific approaches in the laboratory and ecologically relevant observations in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal, A. A. (2000). Communication between plants: This time it’s real. Trends in Ecology & Evolution,15, 446. https://doi.org/10.1016/S0169-5347(00)01987-X.

    Article  CAS  Google Scholar 

  • Arimura, G., Ozawa, R., Shimoda, T., et al. (2000). Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature,406, 512–515. https://doi.org/10.1038/35020072.

    Article  CAS  PubMed  Google Scholar 

  • Ayling, S. M., Smith, S. E., Smith, F. A., & Kolesik, P. (1997). Transport processes at the plant-fungus interface in mycorrhizal associations: Physiological studies. Plant and Soil,196, 305–310.

    CAS  Google Scholar 

  • Babikova, Z., Gilbert, L., Bruce, T. J., Birkett, M., Caulfield, J. C., Woodcock, C., et al. (2013a). Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters,16, 835–843. https://doi.org/10.1111/ele.12115.

    Article  CAS  PubMed  Google Scholar 

  • Babikova, Z., Johnson, D., Bruce, T., Pickett, J. A., & Gilbert, L. (2013b). How rapid is aphid-induced signal transfer between plants via common mycelial networks? Communicative & integrative biology,6, e25904. https://doi.org/10.4161/cib.25904.

    Article  Google Scholar 

  • Bago, B., Zipfel, W., Williams, R. M., Jun, J., Arreola, R., Lammers, P. J., et al. (2002). Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiology,128, 108–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, S. L., Li, G. L., Liu, Y., Kasten Dumroese, R., & Lv, R. H. (2009). Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings. Mycorrhiza,19, 425–434. https://doi.org/10.1007/s00572-009-0245-2.

    Article  PubMed  Google Scholar 

  • Baldwin, I. T., Halitschke, R., Paschold, A., et al. (2006). Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science,311, 812–815. https://doi.org/10.1126/science.1118446.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, I. T., Kessler, A., & Halitschke, R. (2002). Volatile signaling in plant-plant-herbivore interactions: What is real? Current Opinion in Plant Biology,5, 351–354. https://doi.org/10.1016/S1369-5266(02)00263-7.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, I. T., & Schultz, J. C. (1983). Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants. Science,221, 277–279. https://doi.org/10.1126/science.221.4607.277.

    Article  CAS  PubMed  Google Scholar 

  • Barto, E. K., et al. (2011). The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE,6, e27195.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barto, E. K., Weidenhamer, J. D., Cipollini, D., & Rillig, M. C. (2012). Fungal superhighways: Do common mycorrhizal networks enhance below ground communication? Trends in Plant Science,17, 633–637. https://doi.org/10.1016/j.tplants.2012.06.007.

    Article  CAS  PubMed  Google Scholar 

  • Bidartondo, M. I. (2005). The evolutionary ecology of myco-heterotrophy. New Phytologist,167, 335–352.

    PubMed  Google Scholar 

  • Bidartondo, M. I., et al. (2000). High root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguinea (Ericaceae): A cheater that stimulates its victims? American Journal of Botany,87, 1783–1788.

    CAS  PubMed  Google Scholar 

  • Bidartondo, M. I., et al. (2002). Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature,419, 389–392.

    CAS  PubMed  Google Scholar 

  • Bidartondo, M. I., et al. (2004). Changing partners in the dark: Isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proceedings of the Royal Society B,271, 1799–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bingham, M. A., & Simard, S. W. (2011). Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecology and Evolution,1, 306–316. https://doi.org/10.1002/ece3.24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham, M. A., & Simard, S. W. (2012). Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza,22, 317–326. https://doi.org/10.1007/s00572-011-0406-y.

    Article  PubMed  Google Scholar 

  • Booth, M. G. (2004). Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecology Letters,7, 538–546.

    Google Scholar 

  • Booth, M. G., & Hoeksema, J. D. (2010). Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology,91, 2294–2302. https://doi.org/10.1890/09-1139.1.

    Article  PubMed  Google Scholar 

  • Bücking, H., Mensah, J. A., & Fellbaum, C. R. (2016). Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Communicative & Integrative Biology,9, e1107684. https://doi.org/10.1080/19420889.2015.1107684.

    Article  CAS  Google Scholar 

  • Carey, E. V., et al. (2004). Mycorrhiza transfer carbon from a native grass to an invasive weed: Evidence from stable isotopes and physiology. Plant Ecology,172, 133–141.

    Google Scholar 

  • Choi, W. G., Hilleary, R., Swanson, S. J., et al. (2016). Rapid, long-distance electrical and calcium signaling in plants. Annual Review of Plant Biology,67, 287–307. https://doi.org/10.1146/annurev-arplant-043015-112130.

    Article  CAS  PubMed  Google Scholar 

  • Choi, W. G., Swanson, S. J., & Gilroy, S. (2012). High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors. Plant Journal,70, 118–128. https://doi.org/10.1111/j.1365-313X.2012.04917.x.

    Article  CAS  Google Scholar 

  • Choi, W. G., Toyota, M., Kim, S. H., Hilleary, R., & Gilroy, S. (2014). Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences of the United States of America,111, 6497–6502. https://doi.org/10.1073/pnas.1319955111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christmann, A., Weiler, E. W., Steudle, E., et al. (2007). A hydraulic signal in root-to-shoot signalling of water shortage. Plant Journal,52, 167–174. https://doi.org/10.1111/j.1365-313X.2007.03234.x.

    Article  CAS  Google Scholar 

  • Derelle, D., Declerck, S., Genet, P., Dajoz, I., & van Aarle, I. M. (2012). Association of highly and weakly mycorrhizal seedlings can promote the extra- and intraradical development of a common mycorrhizal network. FEMS Microbiology Ecology,79, 251–259. https://doi.org/10.1111/j.1574-6941.2011.01214.x.

    Article  CAS  PubMed  Google Scholar 

  • Dickie, I. A., et al. (2002). Influence of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecological Monographs,74, 505–521.

    Google Scholar 

  • Dickie, I. A., et al. (2004). Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytologist,164, 375–382.

    PubMed  Google Scholar 

  • Dickie, I. A., Koide, R. T., & Steiner, K. C. (2005a). Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecological Monographs,72, 505–521. https://doi.org/10.1890/0012-9615(2002)072%5b0505:ioetom%5d2.0.co;2.

    Article  Google Scholar 

  • Dickie, I. A., Schnitzer, S. A., Reich, P. B., et al. (2005b). Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters,8, 1191–1200. https://doi.org/10.1111/j.1461-0248.2005.00822.x.

    Article  PubMed  Google Scholar 

  • Eason, W. R., Newman, E. I., & Chuba, P. N. (1991). Specificity of interplant cycling of phosphorus: The role of mycorrhizas. Plant and Soil,137, 267–274. https://doi.org/10.1007/BF00011205.

    Article  CAS  Google Scholar 

  • Fellbaum, C. R., Mensah, J. A., Pfeffer, P. E., Kiers, E. T., & Bücking, H. (2012). The role of carbon in fungal nutrient uptake and transport: Implications for resource exchange in the arbuscular mycorrhizal symbiosis. Plant Signaling & Behavior,7, 1509–1512. https://doi.org/10.4161/psb.22015.

    Article  CAS  Google Scholar 

  • Finlay, R. D., & Read, D. J. (1986). The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytologist,103, 143–156.

    Google Scholar 

  • Fitter, A. H. (2001). Specificity, links and networks in the control of diversity in plant and microbial communities. In M. C. Press, et al. (Eds.), Ecology: Achievement and challenge (pp. 95–114). Oxford: Blackwell Scientific.

    Google Scholar 

  • Fitter, A. H., Graves, J. D., Watkins, N. K., et al. (1998). Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Functional Ecology,12, 406–412.

    Google Scholar 

  • Gebauer, G., & Meyer, M. (2003). 15N and 13C natural abundance of autotrophic and mycohetero-trophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist,160, 209–223.

    CAS  PubMed  Google Scholar 

  • Gilbert, L., & Johnson, D. (2017). Plant–plant communication through common mycorhizal networks. Advances in Botanical Research,82, 83–97.

    Google Scholar 

  • Gilroy, S., Białasek, M., Suzuki, N., Górecka, M., Devireddy, A. R., Karpiński, S., et al. (2016). ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant Physiology,171, 1606–1615. https://doi.org/10.1104/pp.16.00434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy, S., Suzuki, N., Miller, G., et al. (2014). A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science,19, 623–630. https://doi.org/10.1016/j.tplants.2014.06.013.

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti, M., et al. (2004). Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytologist,164, 175–181.

    PubMed  Google Scholar 

  • Giovannetti, M., Avio, L., Fortuna, P., et al. (2006). At the root of the wood wide web: Self recognition and non-self incompatibility in mycorrhizal networks. Plant Signaling & Behavior,1, 1–5.

    Google Scholar 

  • Girlanda, M., et al. (2006). Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Molecular Ecology,15, 491–504.

    CAS  PubMed  Google Scholar 

  • Gyuricza, V., Thiry, Y., Wannijn, J., Declerck, S., & Dupré de Boulois, H. (2010). Radiocesium transfer between Medicago truncatula plants via a common mycorrhizal network. Environmental Microbiology,12, 2180–2189. https://doi.org/10.1111/j.1462-2920.2009.02118.x.

    Article  CAS  PubMed  Google Scholar 

  • He, X., Critchley, C., Ng, H., & Bledsoe, C. (2005). Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3 supplied as ammonium nitrate. New Phytologist,167, 897–912.

    CAS  PubMed  Google Scholar 

  • He, X. H., Xu, M. G., Qiu, G. Y., et al. (2009). Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. Journal of Plant Ecology,2, 107–118. https://doi.org/10.1093/jpe/rtp015.

    Article  Google Scholar 

  • He, X. H., et al. (2003). Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Critical Review in Plant Sciences,22, 531–567.

    Google Scholar 

  • He, Y., Cornelissen, J. H. C., Wang, P., Dong, M., & Ou, J. (2019). Nitrogen transfer from one plant to another depends on plant biomass production between conspecific and heterospecific species via a common arbuscular mycorrhizal network. Environmental Science and Pollution Research,26, 8828–8837. https://doi.org/10.1007/s11356-019-04385-x.

    Article  CAS  PubMed  Google Scholar 

  • Hedrich, R., Salvador-Recatalà, V., & Dreyer, I. (2016). Electrical wiring and long-distance plant communication. Trends in Plant Science,21, 376–387. https://doi.org/10.1016/j.tplants.2016.01.016.

    Article  CAS  PubMed  Google Scholar 

  • Hettenhausen, C., Li, J., Zhuang, H., et al. (2017). Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proceedings of the National Academy of Sciences of the United States of America,114, E6703–E6709. https://doi.org/10.1073/pnas.1704536114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igiehon, N. O., & Babalola, O. O. (2017). Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology,101, 4871–4881. https://doi.org/10.1007/s00253-017-8344-z.

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman, D., Gilroy, S., & Ané, J. M. (2014). Staying in touch: Mechanical signals in plant-microbe interactions. Current Opinion in Plant Biology,20, 104–109. https://doi.org/10.1016/j.pbi.2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Jin, H., Pfeffer, P. E., Douds, D. D., Piotrowski, E., Lammers, P. J., & Shachar-Hill, Y. (2005). The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist,168, 687–696.

    CAS  PubMed  Google Scholar 

  • Johansen, A., & Jensen, E. S. (1996). Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biology & Biochemistry,28, 73–81.

    CAS  Google Scholar 

  • Johnson, D. (2015). Priorities for research on priority effects. New Phytologist,205, 1375–1377. https://doi.org/10.1111/nph.13143.

    Article  PubMed  Google Scholar 

  • Johnson, D., et al. (2005). Soil invertebrates disrupt carbon flow through fungal networks. Science,309, 1047.

    CAS  PubMed  Google Scholar 

  • Julou, T., et al. (2005). Mixotrophy in orchids: Insights from a comparative study of green individuals and non-photosynthetic mutants of Cephalanthera damasonium. New Phytologist,166, 639–653.

    CAS  PubMed  Google Scholar 

  • Kennedy, P. G., et al. (2003). High potential for common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. Journal of Ecology,91, 1071–1080.

    Google Scholar 

  • Kiep, V., Vadassery, J., Lattke, J., et al. (2015). Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytologist,207, 996–1004. https://doi.org/10.1111/nph.13493.

    Article  CAS  PubMed  Google Scholar 

  • Knapp, D. G., Pintye, A., & Kovács, G. M. (2012). The dark side is not fastidious- dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS ONE,7, e32570. https://doi.org/10.1371/journal.pone.0032570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kytöviita, M.-M., et al. (2003). A test for mutual aid in common mycorrhizal networks: Established vegetation negates benefit in seedlings. Ecology,84, 898–906.

    Google Scholar 

  • Larsen, P. E., Sreedasyam, A., Trivedi, G., Desai, S., Dai, Y., Cseke, L. J., et al. (2016). Multi-Omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction. Frontiers in Plant Science,6(1061), 2015. https://doi.org/10.3389/fpls.2015.01061.

    Article  Google Scholar 

  • Leake, J. R. (2004). Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Current Opinion in Plant Biology,7, 422–428.

    CAS  PubMed  Google Scholar 

  • Leake, J., Johnson, D., Donnelly, D., et al. (2004). Networks of power and influence, the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany,82, 1016–1045. https://doi.org/10.1139/b04-060.

    Article  Google Scholar 

  • Lerat, S., et al. (2002). C-14 transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia,132, 181–187.

    PubMed  Google Scholar 

  • Matsui, K. (2006). Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology,9, 274–280. https://doi.org/10.1016/j.pbi.2006.03.002.

    Article  CAS  PubMed  Google Scholar 

  • McGuire, K. L. (2007). Common MNs may maintain monodominance in a tropical rain forest. Ecology,88, 567–574. https://doi.org/10.1890/05-1173.

    Article  PubMed  Google Scholar 

  • McKey, D. (1994). Legumes and nitrogen: The evolutionary ecology of a nitrogen-demanding lifestyle. In J. I. Sprent & D. McKey (Eds.), Advances in Legume Systematics (pp. 211–228). Kew: Royal Botanic Gardens.

    Google Scholar 

  • Merrild, M. P., Ambus, P., Rosendahl, S., & Jakobsen, I. (2013). Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytologist,200, 229–240. https://doi.org/10.1111/nph.12351.

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen, B. L., Rosendahl, S., & Jakobsen, I. (2008). Underground resource allocation between individual networks of mycorrhizal fungi. New Phytologist,180(4), 890–898. https://doi.org/10.1111/j.1469-8137.2008.02623.x.

    Article  PubMed  Google Scholar 

  • Miller, G., Schlauch, K., Tam, R., et al. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling,2, ra45. https://doi.org/10.1126/scisignal.2000448.

    Article  PubMed  Google Scholar 

  • Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S., & Farmer, E. E. (2013). GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature,500, 422–426.

    CAS  PubMed  Google Scholar 

  • Nadal, M., & Paszkowski, U. (2013). Polyphony in the rhizosphere: Presymbiotic communication in arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology,16, 473–479. https://doi.org/10.1016/j.pbi.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  • Nygren, P., & Leblanc, H. A. (2015). Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiology,35, 134–147. https://doi.org/10.1093/treephys/tpu116.

    Article  CAS  PubMed  Google Scholar 

  • Perry, D. A. (1998). A movable feast: The evolution of resource sharing in plant-fungus communities. Trends in Ecology & Evolution,13, 432–434.

    CAS  Google Scholar 

  • Pfeffer, P. E., et al. (2004). The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytologist,163, 617–627.

    PubMed  Google Scholar 

  • Proulx, S. R., et al. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution,20, 345–353.

    Google Scholar 

  • Ren, L. X., Lou, Y., Zhang, N., et al. (2013). Role of arbuscular mycorrhizal network in carbon and phosphorus transfer between plants. Biology and Fertility of Soils,49, 3–11. https://doi.org/10.1007/s00374-012-0689-y.

    Article  CAS  Google Scholar 

  • Robinson, D., & Fitter, A. (1999). The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany,50, 9–13.

    CAS  Google Scholar 

  • Salvador-Recatalà, V., Tjallingii, W. F., & Farmer, E. E. (2014). Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytologist,203, 674–684.

    PubMed  Google Scholar 

  • Schuman, M. C., & Baldwin, I. T. (2018). Field studies reveal functions of chemical mediators in plant interactions. Chemical Society Reviews,47, 5338–5353. https://doi.org/10.1039/c7cs00749c.

    Article  CAS  PubMed  Google Scholar 

  • Selosse, M. A., et al. (2002). Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L) L. C. M. Rich. and neighbouring tree ectomycorrhizae. Molecular Ecology,11, 1831–1844.

    CAS  PubMed  Google Scholar 

  • Selosse, M. A., et al. (2004). Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microbial Ecology,47, 416–426.

    CAS  PubMed  Google Scholar 

  • Selosse, M. A., Richard, F., He, X., & Simard, S. W. (2006). Mycorrhizal networks: Des liaisons dangereuses? Trends in Ecology & Evolution,21, 621–628.

    Google Scholar 

  • Sierra, J., & Nygren, P. (2006). Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biology & Biochemistry,38, 1893–2003.

    CAS  Google Scholar 

  • Simard, S. W., et al. (1997). Net transfer of carbon between ectomycorrhizal tree species in the field. Nature,388, 579–582.

    CAS  Google Scholar 

  • Simard, S. W., Beiler, K. J., Bingham, M. A., et al. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biology Reviews,26, 39–60. https://doi.org/10.1016/j.fbr.2012.01.001.

    Article  Google Scholar 

  • Simard, S. W., & Durall, D. M. (2004). Mycorrhizal networks: A review of their extent, function, and importance. Canadian Journal of Botany,82, 1140–1165.

    CAS  Google Scholar 

  • Smith, S. E., Read, D. J. (Eds.) (1997). Mycorrhizal symbiosis (2nd ed.), Academic Press.

  • Song, Y., Wang, M., Zeng, R., Groten, K., & Baldwin, I. T. (2019). Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. Plant, Cell and Environment,42, 2945–2961. https://doi.org/10.1111/pce.13626.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y. Y., Ye, M., Li, C., et al. (2014). Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Scientific Reports,4, 3915. https://doi.org/10.1038/srep03915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Y. Y., Zeng, R. S., Xu, J. F., et al. (2010). Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE,5, e13324. https://doi.org/10.1371/journal.pone.0013324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southworth, D., He, X. H., Swenson, W., Bledsoe, C. S., & Horwath, W. R. (2005). Application of network theory to potential mycorrhizal networks. Mycorrhiza,15, 589–595. https://doi.org/10.1007/s00572-005-0368-z. Epub 2005 Nov 9.

    Article  CAS  PubMed  Google Scholar 

  • Teste, F. P., & Simard, S. W. (2008). Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia,158, 193–203. https://doi.org/10.1007/s00442-008-1136-5. Epub 2008 Sep 10.

    Article  PubMed  Google Scholar 

  • Teste, F. P., Simard, S. W., & Durall, D. M. (2009). Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecology,2, 21–30. https://doi.org/10.1016/j.funeco.2008.11.003.

    Article  Google Scholar 

  • Thiergart, T., Zgadzaj, R., Bozsóki, Z., Garrido-Oter, R., Radutoiu, S., & Schulze-Lefert, P. (2019). Lotus japonicus symbiosis genes impact microbial interactions between symbionts and multikingdom commensal communities. Mbio,10, e01833-19. https://doi.org/10.1128/mBio.01833-19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toju, H., Sato, H., Yamamoto, S., Kadowaki, K., Tanabe, A. S., Yazawa, S., et al. (2013). How are plant and fungal communities linked to each other in belowground ecosystems? A massively parallel pyrosequencing analysis of the association specificity of root-associated fungi and their host plants. Ecology and Evolution,3, 3112–3124. https://doi.org/10.1002/ece3.706. Epub 2013 Aug 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toju, H., Tanabe, A. S., & Sato, H. (2018). Network hubs in root-associated fungal metacommunities. Microbiome,6, 116. https://doi.org/10.1186/s40168-018-0497-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuffen, F., et al. (2002). The effect of earthworms and arbuscular mycorrhizal fungi on growth of and P-32 transfer between Allium porrum plants. Soil Biology and Biochemistry,34, 1027–1036.

    CAS  Google Scholar 

  • Ueda, H., Kikuta, Y., & Matsuda, K. (2012). Plant communication: Mediated by individual or blended VOCs? Plant Signaling & Behavior,7, 222–226. https://doi.org/10.4161/psb.18765.

    Article  CAS  Google Scholar 

  • Vahabi, K., Reichelt, M., Scholz, S. S., et al. (2018). Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformospora indica hyphal network and activate abscisic acid responses. Frontiers in Plant Science,9, 626. https://doi.org/10.3389/fpls.2018.00626.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Bel, A. J. E., Furch, A. C. U., Will, T., et al. (2014). Spread the news: Systemic dissemination and local impact of Ca2+ signals along the phloem pathway. Journal of Experimental Botany,65, 1761–1787. https://doi.org/10.1093/jxb/ert425.

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden, M. G. A. (2004). Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters,7, 293–303.

    Google Scholar 

  • Voets, L., Goubau, I., Olsson, P. A., Merckx, R., & Declerck, S. (2008). Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiology Ecology,65, 350–360. https://doi.org/10.1111/j.1574-6941.2008.00503.x. Epub 2008 Jun 28.

    Article  CAS  PubMed  Google Scholar 

  • Vralstad, T. (2004). Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytologist,164, 7–10.

    PubMed  Google Scholar 

  • Walder, F., Boller, T., Wiemken, A., & Courty, P. E. (2016). Regulation of plants’ phosphate uptake in common mycorrhizal networks: Role of intraradical fungal phosphate transporters. Plant Signaling & Behavior,11, e1131372. https://doi.org/10.1080/15592324.2015.1131372.

    Article  CAS  Google Scholar 

  • Walder, F., Brulé, D., Koegel, S., Wiemken, A., Boller, T., & Courty, P. E. (2015). Plant phosphorus acquisition in a common mycorrhizal network: Regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist,205, 1632–1645. https://doi.org/10.1111/nph.13292. Epub 2015 Jan 23.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G., Sheng, L., Zhao, D., Sheng, J., Wang, X., & Liao, H. (2016). Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Frontiers in Plant Science,7(1901), 2016. https://doi.org/10.3389/fpls.2016.01901.

    Article  CAS  Google Scholar 

  • Weremijewicz, J., & Janos, D. P. (2019). Investigation of plant interactions across common mycorrhizal networks using rotated cores. Journal of Visualized Experiments. https://doi.org/10.3791/59338.

    Article  PubMed  Google Scholar 

  • Whittingham, J., & Read, D. J. (1982). Vesicular-arbuscular mycorrhiza in natural vegetation systems. III Nutrient transfer between plants with mycorrhizal connections. New Phytologist,90, 277–284.

    CAS  Google Scholar 

  • Wilkinson, D. M. (1998). The evolutionary ecology of mycorrhizal networks. Oikos,82, 407–410.

    Google Scholar 

  • Workman, R. E., & Cruzan, M. B. (2016). Common mycelial networks impact competition in an invasive grass. American Journal of Botany,103, 1041–1049. https://doi.org/10.3732/ajb.1600142. Epub 2016 Jun 9.

    Article  CAS  PubMed  Google Scholar 

  • Wu, B., et al. (2001). Can 14C-labelled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytologist,149, 137–146.

    CAS  PubMed  Google Scholar 

  • Xiong, T. C., Ronzier, E., Sanchez, F., Corratgé-Faillie, C., Mazars, C., & Thibaud, J.-B. (2014). Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter. Frontiers in Plant Science,5, 43.

    PubMed  PubMed Central  Google Scholar 

  • Yao, M. K., Désilets, H., Charles, M. T., Boulanger, R., & Tweddell, R. J. (2003). Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza,13, 333–336.

    CAS  PubMed  Google Scholar 

  • Zimmermann, M. R., Maischak, H., Mithöfer, A., et al. (2009). System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiology,149, 1593–1600. https://doi.org/10.1104/pp.108.133884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Oelmüller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oelmüller, R. Interplant communication via hyphal networks. Plant Physiol. Rep. 24, 463–473 (2019). https://doi.org/10.1007/s40502-019-00491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-00491-7

Keywords

Navigation