Skip to main content
Log in

Confirmation of transformability of markers for high carotenoid content in tetraploid potato from diploids

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Potato is the fourth most important staple food crop of the world and it contains a wide range of phytochemicals, including carotenoids. Higher animals are incapable of biosynthesizing carotenoids, so these pigments are essentially taken through the diet for their various health promoting activities. Potato varieties vary greatly in their content of carotenoid and characterizing popularly grown potato cultivars for their carotenoid content is very important not only for their better utilization as specialized potatoes with health benefits, but also for further developing new varieties. Therefore, the present study was carried out to estimate the total carotenoid content of 43 popularly grown Indian potato cultivars and to test transferability of the linked markers for carotenoids which are developed and used in only diploid populations of Solanum, in tetraploid population. Total carotenoid content in the Indian potato cultivars varied from 27.92 μg/100 g f.w in Kufri Bahar (Low) to as high as 281.20 μg/100 g f.w in Kufri Chipsona II (Medium). Further, none of the Indian potato cultivars contain high (≥ 350 μg/100 g f.w) level of carotenoids. The oxygen radical absorption capacity (ORAC) which depicts the antioxidant capacity per kilo gram potato was analyzed. A total of 150 tetraploid potato lines including Indian potato cultivars, indigenous, UPOV and exotic clones were screened for the two tightly linked (bch/CAPS and zea) markers. The CAPS bch marker was found to be loosely associated with carotenoid content whereas, zea marker was found to be a rare in the tetraploid population as only 4 out of 150 contained the marker/allele. Estimation of total carotenoid content of these Indian potato cultivars and successful marker transformation in tetraploid potato population would be of great help for the breeders in developing specialized potato cultivars with high nutritional values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boniebale, M. W., Plaisted, R. L., & Tanksley, S. D. (1988). RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics,120, 1095–1103.

    Google Scholar 

  • Breithaupt, D. E., & Bamedi, A. (2002). Carotenoids and carotenoid esters in potatoes (S. tuberosum L.): New insights into an ancient vegetable. Journal of Agricultural and Food Chemistry,50, 7175–7181.

    Article  CAS  Google Scholar 

  • Brown, C. (2005). Antioxidants in potato. American Journal of Potato Research,82, 163–172.

    Article  CAS  Google Scholar 

  • Brown, C. R., Culley, D., Bonierbale, M., & Amoros, W. (2007). Anthocyanin, carotenoid content, and antioxidant values in native South American potato cultivars. Horticultural Science,42, 1733–1736.

    Google Scholar 

  • Brown, C. R., Culley, D., Yang, C. P., Durst, R., & Wrolstand, R. (2005). Variation of anthocyanin and carotenoid content and associated antioxidant values in potato breeding lines. Journal of American Society of Horticulture Science,130, 174–180.

    Article  CAS  Google Scholar 

  • Brown, C. R., Durst, R. W., Wrolstad, R., & De Jong, W. (2008). Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Research,51, 259–270.

    Article  CAS  Google Scholar 

  • Brown, C. R., Edwards, C. G., Yang, C. P., & Dean, B. B. (1993). Orange flesh trait in potato: Inheritance and carotenoid content. Journal of American Society of Horticulture Science,118, 145–150.

    Article  CAS  Google Scholar 

  • Brown, C. R., Kim, T. S., Ganga, Z., Haynes, K., Jong, D. D., Jahn, M., et al. (2006). Segregation of total carotenoid in high level potato germplasm and its relationship to β carotene hydrolase polymorphism. American Journal of Potato Research,83, 365–372.

    Article  CAS  Google Scholar 

  • Burgos, G., Salas, E., Amoros, W., Auqui, M., Muñoa, L., Kimura, M., et al. (2009). Total and individual carotenoid profiles in S. phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. Journal of Food Composition and Analysis,22, 503–508.

    Article  CAS  Google Scholar 

  • Camire, M. E., Kubow, S., & Donnelly, D. J. (2009). Potatoes and human health. Critical Reviews in Food Science and Nutrition,49, 823–840.

    Article  CAS  Google Scholar 

  • Cao, G., Alessio, H. M., & Cutler, R. G. (1993). Oxygen radical absorbance capacity assay for antioxidants. Free Radical Biology and Medicine,14(3), 303–311.

    Article  CAS  Google Scholar 

  • Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuilano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific over expression of a bacterial mini-pathway. PLoS ONE,2, e-350.

    Article  Google Scholar 

  • Ezekiel, R., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato—a review. Food Research International,50, 487–496.

    Article  CAS  Google Scholar 

  • FAOSTAT. (2017). Retrieved from April 2019 http://www.fao.org/faostat/en/#data/QC.

  • Fruwirth, C. (1912). Zur Ziichtung der kartoffel (p. 565). Hamburg: Deutsche Landw. Presse.

    Google Scholar 

  • Gebhardt, C., Ritter, E., Debener, T., Schachtschabel, U., Walkemieir, B., & Uhring, H. (1989). RFLP analysis and linkage mapping of S. tuberosum. Theoretical and Applied Genetics,78, 65–75.

    Article  CAS  Google Scholar 

  • Haynes, K. G., Clevidence, B. A., Rao, D., & Vinyard, B. T. (2011). Inheritance of carotenoid content in tetraploid × diploid potato crosses. Journal of the American Society for Horticultural Science,136, 265–272.

    Article  Google Scholar 

  • Haynes, K. G., Potts, W. E., Chittams, J. L., & Fleck, D. L. (1994). Determining yellow-flesh intensity in potatoes. Journal of the American Society for Horticultural Science,119, 1057–1059.

    Article  Google Scholar 

  • Iwanzik, W., Tevini, M., Stute, R., & Hilbert, R. (1983). Caotenoidgehalt und–zusammensetzung verschiedener deutscher Kartoffelsorten und deren Bedeutung fu¨r die Fleischfarbe der Knolle. Potato Research,26, 149–162.

    Article  CAS  Google Scholar 

  • Kapitonov, V. V., Tempel, S., & Jurka, J. (2009). Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences. Gene,448, 207–213.

    Article  CAS  Google Scholar 

  • Khachik, F., Beecher, G. R., & Smith, C., Jr. (1995). Lutein, lycopene and their oxidative metabolites in chemoprevention of cancer. Journal of Cellular Biochemistry,59(22), 236–241.

    Article  Google Scholar 

  • Kloosterman, B., De Koeyer, D., Griffiths, R., Flinn, B., Steuernagel, B., Scholz, U., et al. (2008). Genes driving potato tuber initiation and growth: Identification based on transcriptional changes using the POCI array. Functional & Integrative Genomics,8, 329–340.

    Article  CAS  Google Scholar 

  • Kloosterman, B., Oortwijn, M., Celis-Gamboa, C., Uitdewilligen, J., America, T., de Vos, R., et al. (2010). From QTL to candidate gene: a genetical genomics approach using a pooling strategy for simple and complex traits in potato. BMC Genomics,11, 158.

    Article  Google Scholar 

  • Kobayashi, A., Ohara-Takada, A., Tsuda, S., Matsuura-Endo, Ch., Takada, N., Umemura, Y., et al. (2008). Breeding of potato variety ‘Inca-no-hitomi’ with a very high carotenoid content. Breeding Science,58, 77–82.

    Article  Google Scholar 

  • Kotíková, Z., Hejtmánková, A., Lachman, J., Hamouz, K., Trnková, E., & Dvořák, P. (2007). Effect of selected factors on total carotenoid content in potato tubers (Solanum tuberosum L.). Plant Soil Environment,53(8), 355–360.

    Article  Google Scholar 

  • Krinsky, N. I., Mayne, S. T., & Sies, H. (2004). Carotenoids in health and disease. New York: CRC Press.

    Book  Google Scholar 

  • Lachman, J., Hamouz, K., Hejtmánková, A., Dudjak, J., Orsák, M., & Pivec, V. (2003). Effect of white fleece on the selected quality parameters of early potato (Solanum tuberosum L.) tubers. Plant, Soil and Environment,49, 370–377.

    Article  Google Scholar 

  • Latowski, D., Kuczynska, P., & Strzalka, K. (2013). Xanthophyll cycle- a mechanism protecting plants. Redox Report,16(2), 78–90.

    Article  Google Scholar 

  • Morries, W. L., Ducreux, L., Griffiths, D. W., Stewart, D., & Davies, H. V. (2004). Carotenogenesis during tuber development and storage in potato. Journal of Experimental Botany,55, 975–982.

    Article  Google Scholar 

  • Müller, L., Caris-Veyrat, C., Lowe, G., & Böhm, V. (2015). Lycopene and its antioxidant role in the prevention of cardio-vasculasr diseases—a critical review. Critical Reviews in Food Science and Nutrition,56, 1868–1879.

    Article  Google Scholar 

  • Nesterenko, S., & Sink, K. C. (2003). Carotenoid profiles of potato breeding lines and selected cultivars. HortScience,38, 1173–1177.

    Article  CAS  Google Scholar 

  • Patil, V. U., Singh, R., Vanishree, G., Dutt, Som, Kawar, P. G., Bhardwaj, V., et al. (2016a). Genetic engineering for enhanced nutritional quality in potato—a review. Potato Journal,43(1), 1–21.

    Google Scholar 

  • Patil, V. U., Sundaresha, S., Kawar, P. G., & Bhardwaj, V. (2016b). Biology of Solanum tuberosum L (potato): Series of crop specific biology documents (pp. 1–40). New Delhi: Ministry of Environment, Forest and Climate Change.

    Google Scholar 

  • Raigond, P., Singh, B., Gupta, V. K., & Singh, B. P. (2014). Potato flavor: Profiling of Umani 5′-nucleotides from Indian potato cultivars. Indian Journal of Plant Physiology,19(4), 338–344.

    Article  Google Scholar 

  • Rao, A. V., & Rao, L. G. (2007). Carotenoids in human health—invited review. Pharmacological Research,55, 207–216.

    Article  CAS  Google Scholar 

  • Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International,76, 735–750.

    Article  CAS  Google Scholar 

  • Singh, A. K., Tolety, J., Chakrabarti, S. K., Bhardwaj, V., & Tiwari, J. K. (2018). Indian potato varieties (pp. 1–179). Shimla: ICAR-Central Potato Research Institute.

    Google Scholar 

  • Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of Plant pigments: anthocyanins, betalains and carotenoids. Plant Journal,54, 733–749.

    Article  CAS  Google Scholar 

  • Thorup, T. A., Tanyolac, B., Livingstone, K. D., Popovsky, S., Paran, I., & Jahn, M. (2000). Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proceedings of the National Academy of Sciences of the United States of America,97, 11192–11197.

    Article  CAS  Google Scholar 

  • Wolters, A. A., Uitdewilligen, J. G. A. M. L., Kloosterman, B. A., Hutten, R. C. B., Visser, R. G. F., & van Eck, H. J. (2010). Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Molecular Biology,73, 659–671.

    Article  CAS  Google Scholar 

  • Xun, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P., et al. (2011). Genome sequence and analysis of the tuber crop potato. Nature,475(7355), 180–195.

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by Department of Biotechnology, Government of India and European Union under Indo-European collaborative project PotBio-Generating Biomarkers for breeding healthy potatoes involving India, The Netherlands, Germany, Spain and UK. Authors also acknowledge the marker information provided by Dr. Christian Bechem, Wageningen University (Grant No. PotBio-318I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virupaksh U. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, V.U., Singh, B., Vanishree, G. et al. Confirmation of transformability of markers for high carotenoid content in tetraploid potato from diploids. Plant Physiol. Rep. 25, 65–73 (2020). https://doi.org/10.1007/s40502-019-00469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-00469-5

Keywords

Navigation