Skip to main content

Advertisement

Log in

Could Vitamin D Influence Risk for Periodontal Disease—to “D” or Not to “D”?

  • Host Parasite Interactions in Periodontal Disease (C Genco and D Kinane, Section Editors)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to discuss the literature on associations between vitamin D and periodontal disease, including its strengths and weaknesses. Future direction for continued work in this area is provided.

Recent Findings

Research in cross-sectional cohorts, surveys, and case-control studies provide support for a role of vitamin D in periodontal disease, especially using clinical indicators such as bleeding on probing and clinical attachment loss. However, these studies have a number of limitations. They cannot establish temporality of these associations. Most case-control studies have been limited in sample size and have inconsistent findings. A number of cross-sectional studies are restricted to select populations (e.g., persons with HIV, diabetes, rheumatoid arthritis) limiting extrapolation of findings to the general aging population. Fewer prospective studies have been conducted, and only three have examined associations using a biomarker for vitamin D that reflects exposure from all its sources (sunlight, diet, and supplements). One study is limited by using self-reported measures of disease outcomes, and only two used measures of alveolar crestal height. However, of the prospective studies published, there is a suggestion that vitamin D might prevent against tooth loss. Only two randomized controlled trials have examined these associations, and they support the effects of vitamin D supplementation on prevention of tooth loss and gingival bleeding.

Summary

We strongly suggest that new research should focus on prospective study designs with follow-up of participants longer than a decade and long-term clinical trials. Such studies should incorporate measures of alveolar bone loss and tooth loss with indication for reason for tooth loss. Such clinical trials should be designed to examine both the influence of vitamin D supplementation alone as well as with other nutrients (e.g., calcium) or therapeutic medications (e.g., bisphosphonates). Currently, there is no strong evidence to suggest that vitamin D protects against development of periodontal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wei R, Christakos S. Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients. 2015;7(10):8251–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Carmeliet G, Dermauw V, Bouillon R. Vitamin D signaling in calcium and bone homeostasis: a delicate balance. Best Pract Res Clin Endocrinol Metab. 2015;29(4):621–31.

    CAS  PubMed  Google Scholar 

  3. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038.

    PubMed  Google Scholar 

  4. Banack HR, Genco RJ, LaMonte MJ, Millen AE, Buck MJ, Sun Y, et al. Cohort profile: the Buffalo OsteoPerio microbiome prospective cohort study. BMJ Open. 2018;8(12):e024263.

    PubMed  PubMed Central  Google Scholar 

  5. IOM (Institute of Medicine). Dietary reference intakes for calcium and vitamin D. Washington DC: The National Academy Press; 2011.

    Google Scholar 

  6. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    CAS  PubMed  Google Scholar 

  7. Vitamin D. In: Gropper SS, Smith JL, editors. Advanced nutrition and human metabolism. 6th ed. Belmont: Wadsworth, Cengage Learning, Publishers; 2013. p. 390–400.

    Google Scholar 

  8. Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr. 2006;84(4):694–7.

    CAS  PubMed  Google Scholar 

  9. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80(6 Suppl):1678S–88S.

    CAS  PubMed  Google Scholar 

  10. Holick MF, MacLaughlin JA, Doppelt SH. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science (New York, NY). 1981;211(4482):590–3.

    CAS  Google Scholar 

  11. Millen AE, Wactawski-Wende J, Pettinger M, Melamed ML, Tylavsky FA, Liu S, et al. Predictors of serum 25-hydroxyvitamin D concentrations among postmenopausal women: the Women’s Health Initiative Calcium plus Vitamin D clinical trial. Am J Clin Nutr. 2010;91(5):1324–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu K, Meng H, Hou J. Activity of 25-hydroxylase in human gingival fibroblasts and periodontal ligament cells. PLoS One. 2012;7(12):e52053.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mawer EB, Backhouse J, Holman CA, Lumb GA, Stanbury SW. The distribution and storage of vitamin D and its metabolites in human tissues. Clin Sci. 1972;43(3):413–31.

    CAS  PubMed  Google Scholar 

  14. Brannon PM, Yetley EA, Bailey RL, Picciano MF. Overview of the conference “Vitamin D and Health in the 21st Century: an Update”. Am J Clin Nutr. 2008;88(2):483S–90S.

    CAS  PubMed  Google Scholar 

  15. Uitterlinden AG, Fang Y, van Meurs JB, et al. Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states. J Steroid Biochem Mol Biol. 2004;89-90(1–5):187–93.

    CAS  PubMed  Google Scholar 

  16. Gao Z, Liu K, Meng H. Preliminary investigation of the vitamin D pathway in periodontal connective tissue cells. J Periodontol. 2018;89(3):294–302.

    CAS  PubMed  Google Scholar 

  17. Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78(4):1193–231.

    CAS  PubMed  Google Scholar 

  18. Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010;20(10):1352–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu K, Meng H, Hou J. Characterization of the autocrine/paracrine function of vitamin D in human gingival fibroblasts and periodontal ligament cells. PLoS One. 2012;7(6):e39878.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Barragry JM, France MW, Corless D, Gupta SP, Switala S, Boucher BJ, et al. Intestinal cholecalciferol absorption in the elderly and in younger adults. Clin Sci Mol Med. 1978;55(2):213–20.

    CAS  Google Scholar 

  21. Gray RW, Caldas AE, Wilz DR, et al. Metabolism and excretion of 3H-1,25-(OH)2-vitamin D3 in healthy adults. J Clin Endocrinol Metab. 1978;46(5):756–65.

    CAS  PubMed  Google Scholar 

  22. •• Tuckey RC, Cheng CYS, Slominski AT. The serum vitamin D metabolome: What we know and what is still to discover. J Steroid Biochem Mol Biol. 2019;186:4–21 This paper is an extensive review and reports the detection and concentration of many vitamin D metabolites in human serum.

    CAS  PubMed  Google Scholar 

  23. • Slominski AT, Kim TK, Li W, et al. The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. J Steroid Biochem Mol Biol. 2014;144(Pt A):28–39 This study reveals that new vitamin D-hydroxyderivatives, formed from gene CYP11A1, are functionally-selective agonists for vitamin D receptors. CYP11A1 initiates new pathways of vitamin D metabolism in a variety of tissues, which could have significant impact on vitamin D physiological roles in humans.

    CAS  PubMed  Google Scholar 

  24. Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK, et al. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol. 2015;151:25–37.

    CAS  PubMed  Google Scholar 

  25. Slominski AT, Manna PR, Tuckey RC. On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids. 2015;103:72–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    CAS  Google Scholar 

  27. • Orces C, Lorenzo C, Guarneros JE. The prevalence and determinants of vitamin D inadequacy among U.S. older adults: National Health and Nutrition Examination Survey 2007–2014. Cureus. 2019;11(8):e5300 Presents the current vitamin D status of a representative sample of the United States population.

    PubMed  PubMed Central  Google Scholar 

  28. Wandell PE. Population groups in dietary transition. Food Nutr Res. 2013;57.

    Google Scholar 

  29. van der Meer IM, Middelkoop BJ, Boeke AJ, Lips P. Prevalence of vitamin D deficiency among Turkish, Moroccan, Indian and sub-Sahara African populations in Europe and their countries of origin: an overview. Osteoporos Int. 2011;22(4):1009–21.

    CAS  PubMed  Google Scholar 

  30. Wandell P, Ayoob S, Mossberg L, et al. Vitamin D deficiency was common in all patients at a Swedish primary care centre, but more so in patients born outside of Europe. Z Gesund Wiss. 2018;26(6):649–52.

    Google Scholar 

  31. Aucoin M, Weaver R, Thomas R, Jones L. Vitamin D status of refugees arriving in Canada: findings from the Calgary Refugee Health Program. Can Fam Physician. 2013;59(4):e188–94.

    PubMed  PubMed Central  Google Scholar 

  32. Andersson Å, Björk A, Kristiansson P, Johansson G. Vitamin D intake and status in immigrant and native Swedish women: a study at a primary health care centre located at 60°N in Sweden. Food Nutr Res. 2013;57. https://doi.org/10.3402/fnr.v57i0.20089.

    Google Scholar 

  33. Eggemoen ÅR, Knutsen KV, Dalen I, Jenum AK. Vitamin D status in recently arrived immigrants from Africa and Asia: a cross-sectional study from Norway of children, adolescents and adults. BMJ Open. 2013;3:e003293. https://doi.org/10.1136/bmjopen-2013-003293.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dietrich T, Joshipura KJ, Dawson-Hughes B, Bischoff-Ferrari HA. Association between serum concentrations of 25-hydroxyvitamin D3 and periodontal disease in the US population. Am J Clin Nutr. 2004;80(1):108–13.

    CAS  PubMed  Google Scholar 

  35. Dietrich T, Nunn M, Dawson-Hughes B, Bischoff-Ferrari HA. Association between serum concentrations of 25-hydroxyvitamin D and gingival inflammation. Am J Clin Nutr. 2005;82(3):575–80.

    CAS  PubMed  Google Scholar 

  36. Miley DD, Garcia MN, Hildebolt CF, Shannon WD, Couture RA, Anderson Spearie CL, et al. Cross-sectional study of vitamin D and calcium supplementation effects on chronic periodontitis. J Periodontol. 2009;80(9):1433–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jonsson D, Aggarwal P, Nilsson BO, et al. Beneficial effects of hormone replacement therapy on periodontitis are vitamin D associated. J Periodontol. 2013;84(8):1048–57.

    PubMed  Google Scholar 

  38. Millen AE, Hovey KM, LaMonte MJ, Swanson M, Andrews CA, Kluczynski MA, et al. Plasma 25-hydroxyvitamin D concentrations and periodontal disease in postmenopausal women. J Periodontol. 2013;84(9):1243–56.

    CAS  PubMed  Google Scholar 

  39. Antonenko O, Bryk G, Brito G, Pellegrini G, Zeni SN. Oral health in young women having a low calcium and vitamin D nutritional status. Clin Oral Investig. 2015;19(6):1199–206.

    CAS  PubMed  Google Scholar 

  40. Antonoglou GN, Suominen AL, Knuuttila M, Ylöstalo P, Ojala M, Männistö S, et al. Associations between serum 25-hydroxyvitamin d and periodontal pocketing and gingival bleeding: results of a study in a non-smoking population in Finland. J Periodontol. 2015;86(6):755–65.

    CAS  PubMed  Google Scholar 

  41. Lee HJ, Je DI, Won SJ, Paik DI, Bae KH. Association between vitamin D deficiency and periodontal status in current smokers. Community Dent Oral Epidemiol. 2015;43(5):471–8.

    PubMed  Google Scholar 

  42. Adegboye AR, Boucher BJ, Kongstad J, Fiehn NE, Christensen LB, Heitmann BL. Calcium, vitamin D, casein and whey protein intakes and periodontitis among Danish adults. Public Health Nutr. 2016;19(3):503–10.

    PubMed  Google Scholar 

  43. Penoni DC, Torres SR, Farias ML, Fernandes TM, Luiz RR, Leão AT. Association of osteoporosis and bone medication with the periodontal condition in elderly women. Osteoporos Int. 2016;27(5):1887–96.

    CAS  PubMed  Google Scholar 

  44. Beyer K, Lie SA, Kjellevold M, et al. Marine omega-3, vitamin D levels, disease outcome and periodontal status in rheumatoid arthritis outpatients. Nutrition. 2018;55-56:116–24.

    CAS  PubMed  Google Scholar 

  45. Dragonas P, Kaste LM, Nunn M, Gajendrareddy PK, Weber KM, Cohen M, et al. Vitamin D deficiency and periodontal clinical attachment loss in HIV-seropositive women: a secondary analysis conducted in the Women’s Interagency HIV Study (WIHS). Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(6):567–73.

  46. Ebersole JL, Lambert J, Bush H, et al. Serum nutrient levels and aging effects on periodontitis. Nutrients. 2018;10(12).

    PubMed Central  Google Scholar 

  47. Luo PP, Xu HS, Chen YW, Wu SP. Periodontal disease severity is associated with micronutrient intake. Aust Dent J. 2018;63(2):193–201.

    PubMed  Google Scholar 

  48. Bonnet C, Rabbani R, Moffatt MEK, et al. The relation between periodontal disease and vitamin D. J Can Dent Assoc. 2019;84:j4.

    PubMed  Google Scholar 

  49. • Pavlesen S, Mai X, Wactawski-Wende J, et al. Vitamin D status and tooth loss in postmenopausal females: the Buffalo Osteoporosis and Periodontal Disease (OsteoPerio) Study. J Periodontol. 2016;87(8):852–63 One of two prospective studies to examine the biomarker 25(OH)D in relation to tooth loss due to periodontal disease over time. This study asked about reason for tooth loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu K, Meng H, Tang X, et al. Elevated plasma calcifediol is associated with aggressive periodontitis. J Periodontol. 2009;80(7):1114–20.

    CAS  PubMed  Google Scholar 

  51. Boggess KA, Espinola JA, Moss K, et al. Vitamin D status and periodontal disease among pregnant women. J Periodontol. 2011;82(2):195–200.

    CAS  PubMed  Google Scholar 

  52. Jabbar S, Drury J, Fordham J, Datta HK, Francis RM, Tuck SP. Plasma vitamin D and cytokines in periodontal disease and postmenopausal osteoporosis. J Periodontal Res. 2011;46(1):97–104.

    CAS  PubMed  Google Scholar 

  53. Antonoglou GN, Knuuttila M, Niemela O, et al. Low serum level of 1,25(OH)2 D is associated with chronic periodontitis. J Periodontal Res. 2015;50(2):274–80.

    CAS  PubMed  Google Scholar 

  54. Antonoglou GN, Knuuttila M, Niemela O, et al. Serum parathyroid hormone and active vitamin D in chronic periodontitis. J Clin Periodontol. 2015;42(8):726–32.

    CAS  PubMed  Google Scholar 

  55. Japaridze NV, Margvelashvili VV, Shengelia MI, et al. Periodontal diseases in patients with vitamin D-resistant rickets. Georgian Med News. 2015;239:23–6.

    Google Scholar 

  56. Joseph R, Nagrale AV, Joseraj MG, Pradeep Kumar KM, Kaziyarakath JA, Chandini R. Low levels of serum vitamin D in chronic periodontitis patients with type 2 diabetes mellitus: a hospital-based cross-sectional clinical study. J Indian Soc Periodontol. 2015;19(5):501–6.

    PubMed  PubMed Central  Google Scholar 

  57. Abreu OJ, Tatakis DN, Elias-Boneta AR, López del Valle L, Hernandez R, Pousa MS, et al. Low vitamin D status strongly associated with periodontitis in Puerto Rican adults. BMC Oral Health. 2016;16(1):89.

  58. Balci Yuce H, Gokturk O, Aydemir Turkal H, Inanir A, Benli I, Demir O. Assessment of local and systemic 25-hydroxy-vitamin D, RANKL, OPG, and TNF levels in patients with rheumatoid arthritis and periodontitis. J Oral Sci. 2017;59(3):397–404.

    PubMed  Google Scholar 

  59. Laky M, Bertl K, Haririan H, et al. Serum levels of 25-hydroxyvitamin D are associated with periodontal disease. Clin Oral Investig. 2017;21(5):1553–8.

    PubMed  Google Scholar 

  60. Ketharanathan V, Torgersen GR, Petrovski BE, Preus HR. Radiographic alveolar bone level and levels of serum 25-OH-Vitamin D3 in ethnic Norwegian and Tamil periodontitis patients and their periodontally healthy controls. BMC Oral Health. 2019;19(1):83.

    PubMed  PubMed Central  Google Scholar 

  61. Ferreira SM, Lima MH, Omena AL, et al. Prevalence of hypovitaminosis D and its association with oral lesions in HIV-infected Brazilian adults. Rev Soc Bras Med Trop. 2016;49(1):90–4.

    PubMed  Google Scholar 

  62. Zicari S, Sessa L, Cotugno N, et al. Immune activation, inflammation, and non-AIDS co-morbidities in HIV-infected patients under long-term ART. Viruses. 2019;11(3).

    CAS  PubMed Central  Google Scholar 

  63. Mori G, D'Amelio P, Faccio R, et al. Bone-immune cell crosstalk: bone diseases. J Immunol Res. 2015;2015:108451.

    PubMed  PubMed Central  Google Scholar 

  64. Chen SJ, Lin GJ, Chen JW, et al. Immunopathogenic mechanisms and novel immune-modulated therapies in rheumatoid arthritis. Int J Mol Sci. 2019;20(6).

    CAS  PubMed Central  Google Scholar 

  65. Khan FR, Ahmad T, Hussain R, Bhutta ZA. Vitamin D status and periodontal disease among pregnant and non-pregnant women in an underdeveloped district of Pakistan. J Int Soc Prev Community Dent. 2016;6(3):234–9.

    PubMed  PubMed Central  Google Scholar 

  66. Anbarcioglu E, Kirtiloglu T, Ozturk A, et al. Vitamin D deficiency in patients with aggressive periodontitis. Oral Dis. 2019;25(1):242–9.

    PubMed  Google Scholar 

  67. Sahli MW, Wactawski-Wende J, Ram PK, LaMonte M, Hovey KM, Genco RJ, et al. Association of plasma 25-hydroxyvitamin d concentrations and pathogenic oral bacteria in postmenopausal females. J Periodontol. 2014;85(7):944–55.

    CAS  PubMed  Google Scholar 

  68. Thompson FE, Subar AF. Dietary Assessment Methodology. In: Coulston AM, Boushey CJ, Ferruzzi M, Delahanty, editors. Nutrition in the prevention and treatment of disease. 4th ed. Cambridge: Academic; 2017. p. 5–48.

    Google Scholar 

  69. Krall EA. The periodontal-systemic connection: implications for treatment of patients with osteoporosis and periodontal disease. Ann Periodontol. 2001;6(1):209–13.

    CAS  PubMed  Google Scholar 

  70. • Alshouibi EN, Kaye EK, Cabral HJ, et al. Vitamin d and periodontal health in older men. J Dent Res. 2013;92(8):689–93 Prospective study of periodontal disease incidence and progression in older men. This study examined incident and progression in relation to intake of vitamin D from diet and supplements.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jimenez M, Giovannucci E, Krall Kaye E, et al. Predicted vitamin D status and incidence of tooth loss and periodontitis. Public Health Nutr. 2013:1–9.

  72. •• Zhan Y, Samietz S, Holtfreter B, et al. Prospective study of serum 25-hydroxy vitamin D and tooth loss. J Dent Res. 2014;93(7):639–44 One of two prospective studies to examine the biomarker 25(OH)D in relation to tooth loss due to periodontal disease over time. This study included both men and women.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. •• Millen AE, Andrews CA, MJ LM, et al. Vitamin D status and 5-year changes in periodontal disease measures among postmenopausal women: the Buffalo OsteoPerio Study. J Periodontol. 2014;85(10):1321–32 Propsective study of periodontal disease incidence and progression in postemenopausal. This study examined incident and progression in relation to 25(OH)D and had clinical assessment of soft tissue measures indicating periodontal disease along with measures of alveolar bone loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. • Schulze-Spate U, Turner R, Wang Y, et al. Relationship of bone metabolism biomarkers and periodontal disease: the Osteoporotic Fractures in Men (MrOS) Study. J Clin Endocrinol Metab. 2015;100(6):2425–33 Propsective study of periodontal disease incidence and progression in older. This study examined incident and progression in relation to 25(OH)D but was limited by a short follow-up time and no measures of alveolar bone loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lamonte MJ, Hovey KM, Genco RJ, et al. Five-year changes in periodontal disease measures among postmenopausal females: the Buffalo OsteoPerio Study. J Periodontol. 2013;84(5):572–84.

    PubMed  Google Scholar 

  76. Offenbacher S, Barros SP, Singer RE, Moss K, Williams RC, Beck JD. Periodontal disease at the biofilm-gingival interface. J Periodontol. 2007;78(10):1911–25.

    CAS  PubMed  Google Scholar 

  77. Krall EA, Wehler C, Garcia RI, et al. Calcium and vitamin D supplements reduce tooth loss in the elderly. Am J Med Sci. 2001;111(6):452–6.

    CAS  Google Scholar 

  78. Garcia MN, Hildebolt CF, Miley DD, Dixon DA, Couture RA, Spearie CL, et al. One-year effects of vitamin D and calcium supplementation on chronic periodontitis. J Periodontol. 2011;82(1):25–32.

    CAS  PubMed  Google Scholar 

  79. •• Hiremath VP, Rao CB, Naik V, et al. Anti-inflammatory effect of vitamin D on gingivitis: a dose-response randomised control trial. Oral Health Prev Dent. 2013;11(1):61–9 Recent randomized clinical trial showing a relationship between vitamin D supplementaiton and gingival bleeding.

    PubMed  Google Scholar 

  80. •• Nibali L, Di Iorio A, Tu YK, et al. Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol. 2017;44(Suppl 18):S52–78 A thorough review to investigate the association between host genetic variants with both caries and periodontal disease. This review has established that single-nucleotide polymorphisms in the vitamin D receptor gene were associated with periodontitis in candidate-gene and genome-wide association studies.

    PubMed  Google Scholar 

  81. Chapple IL, Bouchard P, Cagetti MG, et al. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J Clin Periodontol. 2017;44(Suppl 18):S39–51.

    PubMed  Google Scholar 

  82. Chen LL, Li H, Zhang PP, Wang SM. Association between vitamin D receptor polymorphisms and periodontitis: a meta-analysis. J Periodontol. 2012;83(9):1095–103.

    PubMed  Google Scholar 

  83. • Rhodin K, Divaris K, North KE, et al. Chronic periodontitis genome-wide association studies: gene-centric and gene set enrichment analyses. J Dent Res. 2014;93(9):882–90 This work explains how gene-centric analyses can enable efficient examination of comprehensive genome-wide association studies. It highlights genes and possible pathways associated with chronic periodontitis.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shimizu S, Momozawa Y, Takahashi A, Nagasawa T, Ashikawa K, Terada Y, et al. A genome-wide association study of periodontitis in a Japanese population. J Dent Res. 2015;94(4):555–61.

    CAS  PubMed  Google Scholar 

  85. Song GG, Choi SJ, Ji JD, Lee YH. Association between tumor necrosis factor-alpha promoter -308 A/G, -238 A/G, interleukin-6 -174 G/C and -572 G/C polymorphisms and periodontal disease: a meta-analysis. Mol Biol Rep. 2013;40(8):5191–203.

    CAS  PubMed  Google Scholar 

  86. Albuquerque CM, Cortinhas AJ, Morinha FJ, Leitão JC, Viegas CA, Bastos EM. Association of the IL-10 polymorphisms and periodontitis: a meta-analysis. Mol Biol Rep. 2012;39(10):9319–29.

    CAS  PubMed  Google Scholar 

  87. Zhong Q, Ding C, Wang M, Sun Y, Xu Y. Interleukin-10 gene polymorphisms and chronic/aggressive periodontitis susceptibility: a meta-analysis based on 14 case-control studies. Cytokine. 2012;60(1):47–54.

    CAS  PubMed  Google Scholar 

  88. Schaefer AS, Bochenek G, Manke T, Nothnagel M, Graetz C, Thien A, et al. Validation of reported genetic risk factors for periodontitis in a large-scale replication study. J Clin Periodontol. 2013;40(6):563–72.

    CAS  PubMed  Google Scholar 

  89. Wang Y, Sugita N, Yoshihara A, et al. Peroxisome proliferator-activated receptor (PPAR) gamma polymorphism, vitamin D, bone mineral density and periodontitis in postmenopausal women. Oral Dis. 2013;19(5):501–6.

    PubMed  Google Scholar 

  90. Vitamin D. In: Gropper SS, Smith JL, Groff JL, editors. Advanced nutrition and human metabolism. 5th ed. Belmont: Wadsworth, Cengage Learning, Publishers; 2005. p. 392–401.

    Google Scholar 

  91. Weaver C, Dawson-Hughes B, Rizzoli R, Heaney R. Nutritional support for osteoporosis. In: Bilezikian JP, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 9th ed: Wiley, Hoboken; 2018. Chapter 69.

  92. Carmel AS, Shieh A, Bang H, Bockman RS. The 25(OH)D level needed to maintain a favorable bisphosphonate response is >/=33 ng/ml. Osteoporos Int. 2012;23(10):2479–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bashutski JD, Eber RM, Kinney JS, Benavides E, Maitra S, Braun TM, et al. The impact of vitamin D status on periodontal surgery outcomes. J Dent Res. 2011;90(8):1007–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Eke PI, Page RC, Wei L, Thornton-Evans G, Genco RJ. Update of the case definitions for population-based surveillance of periodontitis. J Periodontol. 2012;83(12):1449–54.

    PubMed  PubMed Central  Google Scholar 

  95. de la Hunty A, Wallace AM, Gibson S, et al. UK Food Standards Agency Workshop Consensus Report: the choice of method for measuring 25-hydroxyvitamin D to estimate vitamin D status for the UK National Diet and Nutrition Survey. Br J Nutr. 2010;104(4):612–9.

    PubMed  Google Scholar 

  96. Tai SS, Bedner M, Phinney KW. Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem. 2010;82(5):1942–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Stepman HC, Vanderroost A, Van Uytfanghe K, et al. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem. 2011;57(3):441–8.

    CAS  PubMed  Google Scholar 

  98. Standardization of Measurement Procedures. Laboratory Quality Assurance and Standardization Programs. Center for Disease Control and Prevention. http://www.cdc.gov/labstandards/hs_standardization.html. Accessed 17 May 2016.

  99. •• Cashman KD, Dowling KG, Skrabakova Z, et al. Standardizing serum 25-hydroxyvitamin D data from four Nordic population samples using the Vitamin D Standardization Program protocols: shedding new light on vitamin D status in Nordic individuals. Scand J Clin Lab Invest. 2015;75(7):549–61 This study demonstrates how one can calibrate previous assessment of 25(OH)D for newly assessed repeat measures, using LC-MS/MS, in a subset of the sample.

    CAS  PubMed  Google Scholar 

  100. Meghil MM, Hutchens L, Raed A, Multani NA, Rajendran M, Zhu H, et al. The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: a pilot study. Oral Dis. 2019;25(5):1403–13.

    PubMed  PubMed Central  Google Scholar 

  101. Woelber JP, Gartner M, Breuninger L, et al. The influence of an anti-inflammatory diet on gingivitis. A randomized controlled trial. J Clin Periodontol. 2019;46(4):481–90.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors would like to acknowledge members of the OsteoPerio working group and their contributions to the investigations of vitamin D and periodontal disease with Dr. Robert Genco. These include the OsteoPerio Principal Investigator, Dr. Jean Wactawski-Wende; OsteoPerio Co-Investigators, Dr. Michael J. LaMonte and Dr. Christopher A. Andrews; OsteoPerio Research Team Members, Kathleen M. Hovey, and Dr. Millen's former students: Melissa Kluczynski, Elizabeth McLean-Plunket, Jennifer Meng, Dr. Michelle Sahli, and Sarah Twardowski.

Funding

This research is supported by National Institutes of Health (NIH) grants 1R21DE020918 (awarded to Dr. Amy E Millen) and 1R01DE13505 (awarded to Dr. Jean Wactawski-Wende) from the National Institute of Dental and Craniofacial Research (NIDCR) and a grant awarded to Dr. Jean Wactawski-Wende from the Department of Defense (DAMD179616319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Millen.

Ethics declarations

Conflict of Interest

Dr. Pavlesen declares no conflict of interest. Dr. Millen reports grants from National Institute of Dental and Craniofacial Research and the Department of Defense, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Host Parasite Interactions in Periodontal Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millen, A.E., Pavlesen, S. Could Vitamin D Influence Risk for Periodontal Disease—to “D” or Not to “D”?. Curr Oral Health Rep 7, 98–111 (2020). https://doi.org/10.1007/s40496-020-00253-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-020-00253-7

Keywords

Navigation