Skip to main content

Advertisement

Log in

Biomarkers from Secondary Complications in Spinal Cord Injury

  • Neuropharmacology (G Aston-Jones, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In the USA, spinal cord injury (SCI) occurs in 40 people per million every year due to events such as car accidents, falls, violence, or sports injury. Secondary complications that arise from SCI are life-threatening and should be treated as early as possible. In some cases, it is not completely obvious what complication a patient may have until it is too late. Therefore, biomarkers are required to assess the levels of secondary complications after SCI. As there are several complications that pose different warning signs, different biomarkers may be beneficial in early detection, maintenance, and long-term care for patients with SCI.

Recent Findings

Numerous studies have been conducted on biomarkers in various SCI and its related complications, such as neuropathic pain and deep vein thrombosis. In recent years, research has expanded with biomarkers discovered by cellular and molecular, genome-wide transcriptomic analysis, bioinformatics, and clinical studies. Biomarkers have allowed early prediction of the severity of secondary complications due to SCI.

Summary

In this review, we summarize recent studies on the common biomarkers for the secondary complications related to SCI. We highlight the reliable biomarkers that have been tested, e.g., sclerostin, NGF, D-dimer, oncostatin M (OSM), microbiota, and C-reactive protein, which are valuable and with clinical importance. This review also emphasizes continuing research in biomarkers as they can provide valuable cellular and molecular insight into secondary complications after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Autonomic dysreflexia

BDNF:

Drain-derived neurotrophic factor

CNS:

Central nervous system

CRP:

C-reactive protein

CTX:

Carboxy terminal collagen

DVT:

Deep vein thrombosis

GF:

Growth factors

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

IL-6:

Interleukin-6

NP:

Neuropathic pain

lncRNAs:

Long non-coding RNAs

NBD:

Neurogenic Bowel Dysfunction

NF:

Neurotrophic factors

NGF:

Nerve growth factor

NHO:

Neurogenic heterotopic ossification

OSM:

Oncostatin M

OSMR:

OSM receptor

PAI-1:

Plasminogen activator Inhibitor 1

RANKL:

Receptor activator of nuclear factor kB ligand

ROS:

Reactive oxygen species

SCI:

Spinal cord injury

SP:

Substance P

TLR:

Toll-like receptors

TNF-a:

Tumor necrosis factor-α

UTD:

Urinary tract dysfunction

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, et al. Traumatic spinal cord injury-repair and regeneration. Neurosurgery. 2017;80(3S):S9–22. https://doi.org/10.1093/neuros/nyw080.

    Article  PubMed  Google Scholar 

  2. •• Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, et al. Biomarkers in spinal cord injury: prognostic insights and future potentials. Front Neurol. 2019;10:27. https://doi.org/10.3389/fneur.2019.00027. This article provides a review of traumatic spinal cord injury in terms of consequences and its long term outlook. This article also describes common complications of SCI as well.

    Article  PubMed  Google Scholar 

  3. Leister I, Haider T, Mattiassich G, Kramer JLK, Linde LD, Pajalic A, et al. Biomarkers in traumatic spinal cord injury-technical and clinical considerations: a systematic review. Neurorehabil Neural Repair. 2020;34(2):95–110. https://doi.org/10.1177/1545968319899920.

    Article  PubMed  Google Scholar 

  4. • Wong KR, Mychasiuk R, O’Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res. 2020;8(1):42. https://doi.org/10.1038/s41413-020-00119-9. This article discusses NHO as a complication in that it provides a background and multiple viable biomarkers. This article also provides a recommendation for a therapeutic target to decrease NHO.

    Article  CAS  PubMed  Google Scholar 

  5. •• Alexander KA, Tseng HW, Fleming W, Jose B, Salga M, Kulina I, et al. Inhibition of JAK1/2 tyrosine kinases reduces neurogenic heterotopic ossification after spinal cord injury. Front Immunol. 2019;10:377. https://doi.org/10.3389/fimmu.2019.00377. This article provides a detailed explanation of causes for NHO. The article also describes therapeutic targets that could be further studied in order to mitigate this particular complication.

    Article  CAS  PubMed  Google Scholar 

  6. Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, et al. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight. 2017;2(21). https://doi.org/10.1172/jci.insight.96034.

  7. Battaglino RA, Lazzari AA, Garshick E, Morse LR. Spinal cord injury-induced osteoporosis: pathogenesis and emerging therapies. Curr Osteoporos Rep. 2012;10(4):278–85. https://doi.org/10.1007/s11914-012-0117-0.

    Article  PubMed  Google Scholar 

  8. Zhao W, Li X, Peng Y, Qin Y, Pan J, Li J, et al. Sclerostin antibody reverses the severe sublesional bone loss in rats after chronic spinal cord injury. Calcif Tissue Int. 2018;103(4):443–54. https://doi.org/10.1007/s00223-018-0439-8.

    Article  CAS  PubMed  Google Scholar 

  9. Qin W, Li X, Peng Y, Harlow LM, Ren Y, Wu Y, et al. Sclerostin antibody preserves the morphology and structure of osteocytes and blocks the severe skeletal deterioration after motor-complete spinal cord injury in rats. J Bone Miner Res. 2016;31(7):1482. https://doi.org/10.1002/jbmr.2864.

    Article  PubMed  Google Scholar 

  10. Beggs LA, Ye F, Ghosh P, Beck DT, Conover CF, Balaez A, et al. Sclerostin inhibition prevents spinal cord injury-induced cancellous bone loss. J Bone Miner Res. 2015;30(4):681–9. https://doi.org/10.1002/jbmr.2396.

    Article  CAS  PubMed  Google Scholar 

  11. • Maimoun L, Ben Bouallegue F, Gelis A, Aouinti S, Mura T, Philibert P, et al. Periostin and sclerostin levels in individuals with spinal cord injury and their relationship with bone mass, bone turnover, fracture and osteoporosis status. Bone. 2019;127:612–9. https://doi.org/10.1016/j.bone.2019.07.019. This recently published article provides a background into sclerostin as well as multiple possible biomarkers for the complication.

    Article  CAS  PubMed  Google Scholar 

  12. Morse LR, Sudhakar S, Danilack V, Tun C, Lazzari A, Gagnon DR, et al. Association between sclerostin and bone density in chronic spinal cord injury. J Bone Miner Res. 2012;27(2):352–9. https://doi.org/10.1002/jbmr.546.

    Article  CAS  PubMed  Google Scholar 

  13. Tan CO, Battaglino RA, Doherty AL, Gupta R, Lazzari AA, Garshick E, et al. Adiponectin is associated with bone strength and fracture history in paralyzed men with spinal cord injury. Osteoporos Int. 2014;25(11):2599–607. https://doi.org/10.1007/s00198-014-2786-2.

    Article  CAS  PubMed  Google Scholar 

  14. Doherty AL, Battaglino RA, Donovan J, Gagnon D, Lazzari AA, Garshick E, et al. Adiponectin is a candidate biomarker of lower extremity bone density in men with chronic spinal cord injury. J Bone Miner Res. 2014;29(1):251–9. https://doi.org/10.1002/jbmr.2020.

    Article  CAS  PubMed  Google Scholar 

  15. Jorgensen V, Slettahjell HB, Skavberg Roaldsen K, Kostovski E. Carboxy terminal collagen crosslinks as a prognostic risk factor for fall-related fractures in individuals with established spinal cord injury. Spinal Cord. 2019;57(11):985–91. https://doi.org/10.1038/s41393-019-0322-0.

    Article  PubMed  Google Scholar 

  16. Zhu D, Zhou W, Wang Z, Wang Y, Liu M, Zhang G, et al. Periostin: an emerging molecule with a potential role in spinal degenerative diseases. Front Med (Lausanne). 2021;8:694800. https://doi.org/10.3389/fmed.2021.694800.

    Article  Google Scholar 

  17. Shams R, Drasites KP, Zaman V, Matzelle D, Shields DC, Garner DP, et al. The pathophysiology of osteoporosis after spinal cord injury. Int J Mol Sci. 2021;22(6). https://doi.org/10.3390/ijms22063057.

  18. Gifre L, Ruiz-Gaspa S, Carrasco JL, Portell E, Vidal J, Muxi A, et al. Effect of recent spinal cord injury on the OPG/RANKL system and its relationship with bone loss and the response to denosumab therapy. Osteoporos Int. 2017;28(9):2707–15. https://doi.org/10.1007/s00198-017-4090-4.

    Article  CAS  PubMed  Google Scholar 

  19. Widerstrom-Noga E. Neuropathic pain and spinal cord injury: phenotypes and pharmacological management. Drugs. 2017;77(9):967–84. https://doi.org/10.1007/s40265-017-0747-8.

    Article  PubMed  Google Scholar 

  20. Zhao J, Yang L, Huang L, Li Z. Screening of disease-related biomarkers related to neuropathic pain (NP) after spinal cord injury (SCI). Hum Genomics. 2021;15(1):5. https://doi.org/10.1186/s40246-021-00303-w.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao X, Tang Z, Zhang H, Atianjoh FE, Zhao JY, Liang L, et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci. 2013;16(8):1024–31. https://doi.org/10.1038/nn.3438.

    Article  CAS  PubMed  Google Scholar 

  22. Wu S, Bono J, Tao YX. Long noncoding RNA (lncRNA): a target in neuropathic pain. Expert Opin Ther Targets. 2019;23(1):15–20. https://doi.org/10.1080/14728222.2019.1550075.

    Article  CAS  PubMed  Google Scholar 

  23. Yue JK, Winkler EA, Rick JW, Deng H, Partow CP, Upadhyayula PS, et al. Update on critical care for acute spinal cord injury in the setting of polytrauma. Neurosurg Focus. 2017;43(5):E19. https://doi.org/10.3171/2017.7.FOCUS17396.

    Article  PubMed  Google Scholar 

  24. Viswanath O, Urits I, Burns J, Charipova K, Gress K, McNally A, et al. Central neuropathic mechanisms in pain signaling pathways: current evidence and recommendations. Adv Ther. 2020;37(5):1946–59. https://doi.org/10.1007/s12325-020-01334-w.

    Article  PubMed  Google Scholar 

  25. Huang R, Meng T, Zhu R, Zhao L, Song D, Yin H, et al. The integrated transcriptome bioinformatics analysis identifies key genes and cellular components for spinal cord injury-related neuropathic pain. Front Bioeng Biotechnol. 2020;8:101. https://doi.org/10.3389/fbioe.2020.00101.

    Article  PubMed  Google Scholar 

  26. Huber E, Lachappelle P, Sutter R, Curt A, Freund P. Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury? Ann Neurol. 2017;81(5):740–8. https://doi.org/10.1002/ana.24932.

    Article  PubMed  Google Scholar 

  27. Pfyffer D, Vallotton K, Curt A, Freund P. Tissue bridges predict neuropathic pain emergence after spinal cord injury. J Neurol Neurosurg Psychiatry. 2020;91(10):1111–7. https://doi.org/10.1136/jnnp-2020-323150.

    Article  PubMed  Google Scholar 

  28. Cruz CD, Coelho A, Antunes-Lopes T, Cruz F. Biomarkers of spinal cord injury and ensuing bladder dysfunction. Adv Drug Deliv Rev. 2015;82–83:153–9. https://doi.org/10.1016/j.addr.2014.11.007.

    Article  CAS  PubMed  Google Scholar 

  29. Richard C, Bendavid C, Hascoet J, Alimi Q, Khene ZE, Kerdraon J, et al. Urinary biomarkers profiles in patients with neurogenic detrusor overactivity according to their neurological condition. World J Urol. 2020;38(9):2261–8. https://doi.org/10.1007/s00345-019-03016-x.

    Article  CAS  PubMed  Google Scholar 

  30. Barrett GL. The p75 neurotrophin receptor and neuronal apoptosis. Prog Neurobiol. 2000;61(2):205–29. https://doi.org/10.1016/s0301-0082(99)00056-8.

    Article  CAS  PubMed  Google Scholar 

  31. Ryu JC, Tooke K, Malley SE, Soulas A, Weiss T, Ganesh N, et al. Role of proNGF/p75 signaling in bladder dysfunction after spinal cord injury. J Clin Invest. 2018;128(5):1772–86. https://doi.org/10.1172/JCI97837.

    Article  PubMed  Google Scholar 

  32. MacDiarmid SA, McIntyre WJ, Anthony A, Bailey RR, Turner JG, Arnold EP. Monitoring of renal function in patients with spinal cord injury. BJU Int. 2000;85(9):1014–8. https://doi.org/10.1046/j.1464-410x.2000.00680.x.

    Article  CAS  PubMed  Google Scholar 

  33. Kigerl KA, Mostacada K, Popovich PG. Gut microbiota are disease-modifying factors after traumatic spinal cord injury. Neurotherapeutics. 2018;15(1):60–7. https://doi.org/10.1007/s13311-017-0583-2.

    Article  PubMed  Google Scholar 

  34. Zhang C, Zhang W, Zhang J, Jing Y, Yang M, Du L, et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J Transl Med. 2018;16(1):353. https://doi.org/10.1186/s12967-018-1735-9.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang C, Jing Y, Zhang W, Zhang J, Yang M, Du L, et al. Dysbiosis of gut microbiota is associated with serum lipid profiles in male patients with chronic traumatic cervical spinal cord injury. Am J Transl Res. 2019;11(8):4817–34.

    CAS  PubMed  Google Scholar 

  36. Diaz D, Lopez-Dolado E, Haro S, Monserrat J, Martinez-Alonso C, Balomeros D, et al. Systemic inflammation and the breakdown of intestinal homeostasis are key events in chronic spinal cord injury patients. Int J Mol Sci. 2021;22(2). https://doi.org/10.3390/ijms22020744.

  37. Lemmer DP, Alvarado N, Henzel K, Richmond MA, McDaniel J, Graebert J, et al. What lies beneath: why some pressure injuries may be unpreventable for individuals with spinal cord injury. Arch Phys Med Rehabil. 2019;100(6):1042–9. https://doi.org/10.1016/j.apmr.2018.11.006.

    Article  PubMed  Google Scholar 

  38. • Krishnan S, Karg PE, Boninger ML, Vodovotz Y, Constantine G, Sowa GA, et al. Early detection of pressure ulcer development following traumatic spinal cord injury using inflammatory mediators. Arch Phys Med Rehabil. 2016;97(10):1656–62. https://doi.org/10.1016/j.apmr.2016.01.003. This was a recently published review article discussing DVT in acute SCI. The article compiled multiple prior studies in D-dimer, a particular marker of interest for the complication. This article showed that there were some conflicting results involving this marker which was important in determining whether this marker needed more research.

    Article  PubMed  Google Scholar 

  39. Krishnan S, Vodovotz Y, Karg PE, Constantine G, Sowa GA, Constantine FJ, et al. Inflammatory mediators associated with pressure ulcer development in individuals with pneumonia after traumatic spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2017;98(9):1792–9. https://doi.org/10.1016/j.apmr.2016.12.018.

    Article  PubMed  Google Scholar 

  40. Loerakker S, Huisman ES, Seelen HA, Glatz JF, Baaijens FP, Oomens CW, et al. Plasma variations of biomarkers for muscle damage in male nondisabled and spinal cord injured subjects. J Rehabil Res Dev. 2012;49(3):361–72. https://doi.org/10.1682/jrrd.2011.06.0100.

    Article  PubMed  Google Scholar 

  41. Masuda M, Ueta T, Shiba K, Iwamoto Y. D-dimer screening for deep venous thrombosis in traumatic cervical spinal injuries. Spine J. 2015;15(11):2338–44. https://doi.org/10.1016/j.spinee.2015.06.060.

    Article  PubMed  Google Scholar 

  42. Piran S, Schulman S. Thromboprophylaxis in patients with acute spinal cord injury: a narrative review. Semin Thromb Hemost. 2019;45(2):150–6. https://doi.org/10.1055/s-0039-1678720.

    Article  CAS  PubMed  Google Scholar 

  43. Boudaoud L, Roussi J, Lortat-Jacob S, Bussel B, Dizien O, Drouet L. Endothelial fibrinolytic reactivity and the risk of deep venous thrombosis after spinal cord injury. Spinal Cord. 1997;35(3):151–7. https://doi.org/10.1038/sj.sc.3100373.

    Article  CAS  PubMed  Google Scholar 

  44. Roussi J, Bentolila S, Boudaoud L, Casadevall N, Vallee C, Carlier R, et al. Contribution of D-Dimer determination in the exclusion of deep venous thrombosis in spinal cord injury patients. Spinal Cord. 1999;37(8):548–52. https://doi.org/10.1038/sj.sc.3100891.

    Article  CAS  PubMed  Google Scholar 

  45. Latifi S, Koushki D, Norouzi Javidan A, Matin M, Sabour H. Changes of leptin concentration in plasma in patients with spinal cord injury: a meta-analysis. Spinal Cord. 2013;51(10):728–31. https://doi.org/10.1038/sc.2013.82.

    Article  CAS  PubMed  Google Scholar 

  46. Horiuchi M, Okita K. Arm-cranking exercise training reduces plasminogen activator inhibitor 1 in people with spinal cord injury. Arch Phys Med Rehabil. 2017;98(11):2174–80. https://doi.org/10.1016/j.apmr.2017.02.007.

    Article  PubMed  Google Scholar 

  47. Hart JE, Goldstein R, Walia P, Teylan M, Lazzari A, Tun CG, et al. FEV1 and FVC and systemic inflammation in a spinal cord injury cohort. BMC Pulm Med. 2017;17(1):113. https://doi.org/10.1186/s12890-017-0459-6.

    Article  PubMed  Google Scholar 

  48. Zha J, Smith A, Andreansky S, Bracchi-Ricard V, Bethea JR. Chronic thoracic spinal cord injury impairs CD8+ T-cell function by up-regulating programmed cell death-1 expression. J Neuroinflammation. 2014;11:65. https://doi.org/10.1186/1742-2094-11-65.

    Article  CAS  PubMed  Google Scholar 

  49. Riegger T, Conrad S, Liu K, Schluesener HJ, Adibzahdeh M, Schwab JM. Spinal cord injury-induced immune depression syndrome (SCI-IDS). Eur J Neurosci. 2007;25(6):1743–7. https://doi.org/10.1111/j.1460-9568.2007.05447.x.

    Article  PubMed  Google Scholar 

  50. Casili G, Impellizzeri D, Cordaro M, Esposito E, Cuzzocrea S. B-cell depletion with CD20 antibodies as new approach in the treatment of inflammatory and immunological events associated with spinal cord injury. Neurotherapeutics. 2016;13(4):880–94. https://doi.org/10.1007/s13311-016-0446-2.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Guan Z, Reader B, Shawler T, Mandrekar-Colucci S, Huang K, et al. Autonomic dysreflexia causes chronic immune suppression after spinal cord injury. J Neurosci. 2013;33(32):12970–81. https://doi.org/10.1523/JNEUROSCI.1974-13.2013.

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Wu F, Xu D, Zhi Z, Xu G. Inhibition of TREM1 reduces inflammation and oxidative stress after spinal cord injury (SCI) associated with HO-1 expressions. Biomed Pharmacother. 2019;109:2014–21. https://doi.org/10.1016/j.biopha.2018.08.159.

    Article  CAS  PubMed  Google Scholar 

  53. Sezer N, Akkus S, Ugurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6(1):24–33. https://doi.org/10.5312/wjo.v6.i1.24.

    Article  PubMed  Google Scholar 

  54. Fehlings MG, Austin JW. Posttraumatic syringomyelia. J Neurosurg Spine. 2011;14(5):570–2; discussion 2. https://doi.org/10.3171/2010.4.SPINE1047.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Cai lab for the discussion.

Funding

This research was supported by NIH grant P30CA072720, the Rutgers Cancer Institute of New Jersey, and the New Jersey Commission on Spinal Cord Research, grant number 15IRG006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuropharmacology

Appendix

Appendix

Table 1 Biomarkers present in secondary complications of spinal cord injury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alostaz, H., Cai, L. Biomarkers from Secondary Complications in Spinal Cord Injury. Curr Pharmacol Rep 8, 20–30 (2022). https://doi.org/10.1007/s40495-021-00268-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-021-00268-3

Keywords

Navigation