Skip to main content
Log in

Effectiveness of Essential Oils and Their Components Against Triatoma infestans (Hemiptera: Reduviidae)

  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chagas disease is a neglected tropical disease caused by the protozoan parasite called Trypanosoma cruzi affecting 7–8 million people in the world. Triatoma infestans (Klug) (Hemiptera: Reduviidae) is the main vector of Chagas disease in the southern cone of South America. Genetic evidence indicates that T. infestans originated in the Cochabamba region, Sucre, in Central Bolivia, where there are jungle sites of this species, and from which the domestic species is believed to derive, currently distributed in Chile, Argentina, Brazil, Bolivia, and Paraguay. Chemical control of the vector by spraying dwellings with pyrethroids has been the most widely used strategy to reduce the incidence of this endemic disease. The long-term use of pyrethroid insecticides in T. infestans control campaigns has led to the development of resistance in treated populations. Recently, there has been great interest in the use of botanical products as new alternatives to synthetic insecticides. Essential oils (EOs) seem to be good candidates due to lesser mammalian toxicity and persistence in the environment. In this review, we summarize recent data on toxicity of EOs and their compounds against T. infestans.

Recent Findings

A total of 12 research articles from different sources were reviewed and analyzed to compare the effectiveness of the studied EOs and monoterpenes on kissing bugs. The monoterpenes and the EOs reported in the experimental procedures and their effectiveness against T. infestans are described in Table 1. A total of 22 monoterpenes and 46 EOs were reported and distributed in 12 botanical families. Of these, 18 EOs belonged to the following families: Asteraceae, 8; Lamiaceae, 5; Apiaceae, 2; Anacardiaceae, 2; Buddlejaceae, 4; Verbenaceae, 2; and one each to Monimiaceae, Capparaceae, Umbelliferae, Myrtaceae, Fabaceae, and Labiatae. The main active components of the EOs responsible for the ovicidal and larvicidal properties on T. infestans were menthyl acetate, L-menthone, L-menthol, isomenthol, piperitone, linalool, pulegone, 1,8-cineole, α,β-thujone, limonene, E-anethol, and E-nerolidol. Moreover, the compounds eugenol, 1,8-cineole, linalool, menthol, α-terpineol, and thymol were the most effective inducing hyperactivity (disordered, erratic, and spasmodic locomotor activity). Reported effectiveness varied widely due to the difference in the evaluation methodology and properties of both EOs and monoterpenes. Some of the advantages of using EOs and monoterpenes are that they have little environmental impact because of their low toxicity to mammals and very low environmental persistence. An important finding was the reported synergism on the hyperactivity and mortality effect between eugenol and permethrin on T. infestans.

Summary

In recent years, the toxicity of new essential oils and their compounds on T. infestans was evaluated, as well as combinations of monoterpenes with pyrethroids. The latter is the most promising result since it could be a new tool for monitoring the population dynamic. The findings of this work show that certain EOs and their components have insecticidal and repellent potential for their development as formulations for T. infestans. The production of EO is feasible due to its low cost, availability, and accessibility. It is difficult to compare the reported info from literature due to the wide variety of exposure bioassay techniques and chemical extraction methods of the EOs and their compounds. The synergistic effect between eugenol and permethrin on T. infestans suggests that this combination could be a viable alternative of the flushing-out strategy employed in the national control campaigns. Thus, essential oils and their constituents would contribute to delay the development of insecticide resistance in the populations of T. infestans through the combination of these actives with pyrethroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Organización Mundial de la Salud. La enfermedad de Chagas (tripanosomiasis americana). 2021. https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis). Accessed 5 March 2023.

  2. WHO Expert Committee on the Control of Chagas Diasease (2000: Brasilia, Brazil) & World Health Organization. Control of Chagas disease: second report of the WHO expert committee. World Health Organization. 2002. https://apps.who.int/iris/handle/10665/42443. Accessed 23 March 2023.

  3. Sosa Estani S, Segura EL. Tratamiento de la infección por Tripanosoma cruzi en fase indeterminada. In: Experiencia y normalización actual en la Argentina [Simposio]. Simposio internacional. Aires, Argentina: Academia Nacional de Medicina. Problemática de la enfermedad de Chagas; 1999. http://www.medicinabuenosaires.com/revistas/vol59-99/supl2/v59_s2_166_170.pdf. Accessed 9 Jan 2023.

    Google Scholar 

  4. Zerba EN. Susceptibility and resistance to insecticides of Chagas disease vectors. Medicine. 1999;59:41–6.

    Google Scholar 

  5. Dias JC, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz. 2002;97:603–12. https://doi.org/10.1590/s0074-02762002000500002.

    Article  PubMed  CAS  Google Scholar 

  6. Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop. 2015;149:70–85. https://doi.org/10.1016/j.actatropica.2015.05.014.

    Article  PubMed  CAS  Google Scholar 

  7. Vassena CV, Picollo MI, Zerba EN. Insecticide resistance in Brazilian Triatoma infestans and Venezuelan Rhodnius prolixus. Med Vet Entomol. 2000;14:51–5. https://doi.org/10.1046/j.1365-2915.2000.00203.x.

    Article  PubMed  CAS  Google Scholar 

  8. Picollo MI, Vassena C, Santo Orihuela P, Barrios S, Zaidemberg M, Zerba E. High resistance to pyrethroid insecticides associated to the ineffectiveness of field treatments in Triatoma infestans (Hemiptera, Reduvidae) from the north of Argentina. J Med Entomol. 2005;42:637–42. https://doi.org/10.1093/jmedent/42.4.637.

    Article  PubMed  CAS  Google Scholar 

  9. Toloza AC, Germano MD, Mougabure Cueto GA, Vassena CV, Zerba EN, Picollo MI. Differential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol. 2008;45:421–6. https://doi.org/10.1603/0022-2585(2008)45.

    Article  PubMed  CAS  Google Scholar 

  10. Germano MD, Roca Acevedo G, Mougabure Cueto GA, Toloza AC, Vassena CV, Picollo MI. New findings of insecticide resistance in Triatoma infestans (Heteroptera: Reduviidae) from the Gran Chaco. J Med Entomol. 2010;47:1077–81. https://doi.org/10.1603/ME10069.

    Article  PubMed  CAS  Google Scholar 

  11. Lardeux F, Depickère S, Duchon S, Chavez T. Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Trop Med Int Health. 2010;15:1037–48. https://doi.org/10.1111/j.1365-3156.2010.02573.x.

    Article  PubMed  Google Scholar 

  12. Fronza G, Toloza AC, Picollo MI, Carbajo AE, Rodríguez S, Mougabure-Cueto GA. Modelling the association between deltamethrin resistance in Triatoma infestans populations of the Argentinian Gran Chaco region with environmental factors. Acta Trop. 2019;194:53–61. https://doi.org/10.1016/j.actatropica.2019.03.021.

    Article  PubMed  CAS  Google Scholar 

  13. Reynoso MN, Alzogaray RA, Zerba EN. Interacciones toxicológicas y modificación del comportamiento en vinchucas expuestas a monoterpenos vegetales e insecticidas sintéticos. 2009. https://ri.conicet.gov.ar/bitstream/handle/11336/82148/CONICET_Digital_Nro.ec2fcfc3-b167-46f6-8db9-380721b166c6_A.pdf?sequence=2&isAllowed=y.

  14. Isman MB. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticidas. Phytochem Rev. 2020;19:235–41. https://doi.org/10.1007/S11101-019-09653-9.

    Article  CAS  Google Scholar 

  15. Casado Villaverde I. Optimización de la extracción de aceites esenciales por destilación en corriente de vapor. 2018. https://oa.upm.es/49669/1/TFG_IRENE_CASADO_VILLAVERDE.pdf. Accessed 1 Dec 2022.

  16. Moretti AN. Efectos letales y subletales de monoterpenos sobre vectores de Chagas y su posible uso como herramientas de control. 2015. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5773_Moretti.pdf. Accessed 23 Dec 2022.

  17. Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol. 2012;57:405–24. https://doi.org/10.1146/annurev-ento-120710-100554.

    Article  PubMed  CAS  Google Scholar 

  18. Bakkali F, Averbeck S, Averbeck D, Adomar M. Biological effects of essential oils – a review. Food Chem Toxicol. 2008;46:446–75. https://doi.org/10.1016/j.fct.2007.09.106.

    Article  PubMed  CAS  Google Scholar 

  19. Tripathi AK, Upadhyay S, Bhuiyan M. Bhattacharya PR.A review on prospects of essential oils as biopesticide in insect-pest management. J Pharmacognosy Phytother. 2009;1:52–63.

    CAS  Google Scholar 

  20. Nerio LS, Olivero-Verbel J, Stashenko E. Repellent activity of essential oils: a review. Bioresour Technol. 2010;101:372–8. https://doi.org/10.1016/j.biortech.2009.07.048.

    Article  PubMed  CAS  Google Scholar 

  21. Marques Camarena DM. Composición química de los aceites esenciales de Lavanda y Tomillo. Determinación de la actividad antifúngica. 2015. https://riunet.upv.es/bitstream/handle/10251/62057/TFG%20MANUEL%20MARQUES%20CAMARENA_14489064360187381276109123176571.pdf?sequence=1. Accessed 8 Jan 2023.

  22. López SB, López ML, Aragón LM, Tereschuk ML, Slanis AC, Feresin GE, Tapia AA. Composition and anti-insect activity of essential oils from Tagetes L. Species (Asteraceae, Helenieae) on Ceratitis capitata Wiedemann and Triatoma infestans Klug. J Agric Food Chem. 2011;59(10):5286–92. https://doi.org/10.1021/jf104966b.

    Article  PubMed  CAS  Google Scholar 

  23. •• Fournet A, Rojas de Arias A, Charles B, Bruneton J. Chemical constituents of essential oils of Muña, Bolivian plants traditionally used as pesticides, and their insecticidal properties against Chagas disease vectors. J Ethnopharmacol. 1996; 52(3): 1459. https://doi.org/10.1016/0378-8741(96)01406-7This article is the first identified paper on essential oils on Triatoma infestans (Klug, 1834) (Hemíptera: Reduviidae) 1996.

  24. • Laurent D, Vilaseca LA, Chantraine JM, Ballivian C, Saavedra G, Ibañez R. Insecticidal activity of essential oils on Triatoma infestans. Phytother Res. 1997;11:285290. This work is the longest report on the insecticidal effect of monoterpenes and essential oils from different plant species, geographic regions, and plant parts on Triatoma infestans eggs, nymphs, and adults.

    Article  Google Scholar 

  25. Lima B, López S, Luna L, Agüero MB, Aragón L, Tapia A, Zacchino S, López ML, Zygadlo J, Feresin GE. Essential oils of medicinal plants from the Central Andes of Argentina: chemical composition, and antifungal, antibacterial, and insect-repellent activities. Chem Biodivers. 2011;8:924–36. https://doi.org/10.1002/cbdv.201000230.

    Article  PubMed  CAS  Google Scholar 

  26. López S, Lima B, Aragón L, Ariza-Espinar L, Tapia A, Zacchino S, Zygadlo J, Feresin GE, López ML. Essential Oil of Azorella cryptantha collected in two different locations from San Juan Province, Argentina: Chemical variability and anti-insect and antimicrobial activities. Chem. Biodivers. 2012: 9:14521464. https://doi.org/10.1002/cbdv.201100319.

  27. Moretti A, Zerba EN, Alzogaray RA. Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 monoterpene alcohols. J Med Entomol. 2013;50:1046–54. https://doi.org/10.1603/ME12248.

    Article  PubMed  CAS  Google Scholar 

  28. Moretti AN, Seccacini EA, Zerba EN, Canale D, Alzogaray RA. The botanical monoterpenes linalool and eugenol flush-out nymphs of Triatoma infestans (Hemiptera: Reduviidae). J Med Entomology. 2017; 12931298. https://doi.org/10.1093/jme/tjx068.

  29. •• Reynoso MN, Lucia A, Zerba EN, Alzogaray RA. Eugenol- hyperactivated nymphs of Triatoma infestans become intoxicated faster that non hyperactivated nymphs when exposed to a permethrin-treated surface. Parasite Vector. 2018;11:573. https://doi.org/10.1186/s13071-018-3146-4. This article identifies good results using the eugenol-permethrin treatment combining different application methods.

    Article  CAS  Google Scholar 

  30. Mojica M, Alzogaray RA, Mengoni SL, Reynoso MN, Pinto CF, Niemeyer HM, Echeverría J. Repellent activity of the essential oil from Laurelia sempervirens (Ruiz & Pav.) Tul. (Monimiaceae) on Triatoma infestans (Klug). Bol Latinoam Caribe. Plant Med Aromat. 2020;19(4):387–94. https://doi.org/10.37360/blacpma.20.19.4.26.

    Article  CAS  Google Scholar 

  31. López S, Tapia A, Zygadlo J, Stariolo R, Abraham GA, Cortez Tornello PR. Zuccagnia punctata Cav. essential oil into poly (ε-caprolactone) matrices as a sustainable and environmentally friendly strategy biorepellent against Triatoma infestans (Klug) (Hemiptera, Reduviidae). Molecules. 2021;26(4056) https://doi.org/10.3390/molecules26134056.

  32. Mojica M, Alzogaray R, Reynoso M, Mengoni S, Pinto C, Niemeyer H, Echeverría H. Actividad repelente de tres aceites esenciales contra Triatoma infestans klug (Hemiptera: reduviidae). https://revistas.usfx.bo/index.php/bs/article/view/634/426.

  33. Sosa E. Actividad insecticida del aceite esencial de Cuminum cyminum L. de Artaza, Belén, Catamarca, sobre Triatoma infestans (Klug, 1834) (Hemíptera: Reduviidae). [Trabajo Final de Licenciatura, Universidad Nacional de Catamarca]. 2022.

  34. Miller AT, Adams EM. Modes of action of pyrethroids. In: Coats JR, editor. Insecticide mode of action. New York: Academy Press; 1982. p. 3–27.

    Chapter  Google Scholar 

  35. Alzogaray R, Zerba N. Incoordination, paralysis and recovery after pyrethroid tretament on nymphs III of Triatoma infestans (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 1997;92:431–5. https://doi.org/10.1590/S0074-02761997000300023.

    Article  PubMed  CAS  Google Scholar 

  36. Alzogaray R, Zerba E. Behavioral response of fifth instar nymphs of Triatoma infestans (Hemiptera: Reduviidae) to pyrethroids. Acta Trop. 2001;78:51–7. https://doi.org/10.1016/S0001-706X(00)167-4.

    Article  PubMed  CAS  Google Scholar 

  37. Sfara V, Zerba EN, Alzogaray RA. Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. J Med Entomol. 2009;46:511–5. https://doi.org/10.1603/033.046.0315.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sosa Eunice analyzed the data, contributed reagents/materials/analysis tools, wrote the manuscript, and prepared figures and/or tables.

Quiroga Viviana conceived and designed the experiments, contributed laboratory materials, provided cumin samples and obtained cumin essential oil, provided reagents, and reviewed the drafts of the article.

Toloza Ariel Ceferino conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the article, and reviewed the drafts of the paper.

Corresponding author

Correspondence to V. Quiroga.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosa, E., Quiroga, V. & Toloza, A. Effectiveness of Essential Oils and Their Components Against Triatoma infestans (Hemiptera: Reduviidae). Curr Trop Med Rep 10, 262–280 (2023). https://doi.org/10.1007/s40475-023-00295-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-023-00295-8

Keywords

Navigation