Skip to main content

Advertisement

Log in

Coral Snake Envenomations in Central and South America

  • Hot Topics in Tropical Medicine (ME Bottazzi, D Abraham, Section Editors)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Snakebites are increasingly recognized as a neglected tropical disease. The purposes of this review were to determine the significance of coral snakebites in Central and South America and how best to treat these envenomations. Questions that needed to be answered included:

What is the incidence of coral snake envenomation?

What are the features of coral snake envenomation?

What are the pharmacological and nonpharmacological ways to treat these bites?

Recent Findings

Multiple case reports and series describe the clinical features of coral snake envenomations, which account for fewer than 5% of all snakebites in Central and South America. Coral snake venom is a complex mixture of neurotoxins and other biologically active substances. There are multiple coral snake antivenoms available, but no single antivenom can be used for all species.

Summary

Coral snake envenomations are characterized by motor and sensory neurotoxicity. However, muscle damage, renal injury, hematologic toxicity, electrocardiographic abnormalities, and nonspecific signs and symptoms are also possible consequences. Supportive care and antivenom are the mainstays of therapy. Pressure immobilization may prevent systemic absorption, and neostigmine may protect against paralysis. Death is uncommon if treatment is initiated promptly. Nonspecific inhibitors of various venom components may serve as a bridge to definitive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. The Lancet. Snake-bite envenoming: a priority neglected tropical disease Lancet. 2017; 390:2.

  2. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, et. al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 2008, 5:1591–1604.

    Article  Google Scholar 

  3. Gutierrez JM. Current challenges for confronting the public health problem of snakebite envenoming in Central America. J Venom Anim Toxins Incl Trop Dis. 2014;20:7.

    Article  Google Scholar 

  4. Magalhaes SFV, Peixoto HM, Moura M, Monteiro WM et. al. Snakebite envenomation in the Brazilian Amazon: a descriptive study. Trans R Soc Trop Med Hyg. 2018; 113:143–5. Although mortality is low following coral snake envenomation, morbidity is significant without appropriate treatment. This article also reviews the clinical features of coral snake envenomations and reminds readers that patients may have significant morbidity and, occasionally, mortality following coral snake bite.

    Article  Google Scholar 

  5. Ribeiro LA, Alburquerque MJ, de Campos VAFP, Katz G, et. al. Deaths caused by venomous snakes in the state of São Paulo: evaluation of 43 cases from 1988 to 1993. Rev Assoc Med Bras 1998; 44:312–318.

  6. Central and South American Micrurus (Coral Snake Venom) found at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+8329. Accessed on August 23, 2019.

  7. de Roodt AR, De Titto E, Dolab JA, Chippaux JP. Envenoming by coral snakes (micrurus) in Argentina during the period between 1979-2003. Rev Inst Med Trop Sao Paulo. 2013;55(1):13–8.

    Article  Google Scholar 

  8. Bucaretchi F, Capitani EM, Vieira RJ, et al. Coral snake bites (Micrurus spp.) in Brazil: a review of literature reports. Clin Toxicol (Phila). 2016; 54:222–34. Coral snake envenomations are characterized by pain, paresthesias, and, less commonly, peripheral weakness. Flaccid paralysis and respiratory failure are possible, but uncommon. Antivenom and good supportive care can prevent most deaths from coral snake bites. This reference is relevant because it describes the clinical features and the outcomes of coral snake envenomations in Brazil, the country with the highest number of coral snake envenomations in South America.

  9. Barros ACS, Fernandes DP, Ferreira LCL, Santos MC. Local effects induced by venoms from five species of genus Micrurus sp (coral snakes). Toxicon. 1994;32:445–52.

    Article  CAS  Google Scholar 

  10. Correa-Netto C, Junqueira-de-Azevedo Ide L, Silva DA, Ho PL, et. al. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J Proteome 2011; 74(9):1795–1809.

  11. Casais-E-Silva LL, Teixeira CF, Lebrun I, Lomonte B, et. al. Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2. Toxicol Lett 2016; 257: 60–71.

    Article  CAS  Google Scholar 

  12. Francis, BR, Jorge da Silva Jr N, Seebart C, Casais E Silva LL, et. al. Toxins isolated from the venom of the Brazilian coral snake (Micrurus frontalis frontalis) include hemorrhagic type phopholipases A2 and postsynaptic neurotoxins. Toxicon. 1997; 35:1193–1203.

    Article  CAS  Google Scholar 

  13. Strauch MA, Souza GJ, Pereira JN, Ramos TDS, Cesar MO, et. al. True or false coral snake: is it worth the risk? A Micrurus corallinus case report J Venom Anim Toxins Incl Trop Dis 2018; 24:10.

  14. de Roodt AR, Lago NR, Stock RP. Myotoxicity and nephrotoxicity by Micrurus venoms in experimental envenomation. Toxicon. 2012;59:356–64.

    Article  Google Scholar 

  15. Tanaka GD, Pidde-Queiroz G, de Fatima DFM, van den Berg C, Tambourgi DV. Micrurus snake venoms activate human complement system and generate anaphylatoxins. BMC Immunol. 2012;13:4.

    Article  Google Scholar 

  16. da Silva AM, da Fonseca WL, de Araujo Valente Neto E, Bisneto PF, et. al. Envenomation by Micrurus annellatus bolivianus (Peters, 1871) coral snake in the western Brazilian Amazon. Toxicon 2019; 166:34–38.

    Article  CAS  Google Scholar 

  17. Silva IM, Bernal JC, Gonçalves-Bisneto PF, Tavares AM, et. al. Snakebite by Micrurus averyi (Schmidt, 1939) in the Brazilian Amazon basin: case report coral snakebite by Micrurus averyi. Toxicon. 2018; 141:51–55.

    Article  Google Scholar 

  18. Manock SR, Suarez G, Graham D, Avila-Aguero ML, Warrell DA. Neurotoxic envenoming by south American coral snake (Micrurus lemniscatus helleri): case report from eastern Ecuador and review. Trans R Soc Trop Med Hyg. 2008;102:1127–32.

    Article  Google Scholar 

  19. Bucaretchi F, Borrasca-Fernandes CF, De Capitani EM, Hyslop S. Consecutive envenomation of two men by the same coral snake (Micrurus corallinus). Clin Toxicol (Phila). 2019. https://doi.org/10.1080/15563650.2019.1610568.

    Article  Google Scholar 

  20. Cañas CA, Castro-Herrera F, Castaño-Valencia S. Envenomation by the red-tailed coral snake (Micrurus mipartitus) in Colombia. J Venom Anim Toxins incl Trop Dis. 2017;23:9.

    Article  Google Scholar 

  21. Heckmann X, Marty C, Starace F, Louembe J-D, Larreche S. Envenimation par Micrurus psyches en Guyane française. Bull Soc Pathol Exot. 2017;110:276–80.

    Article  CAS  Google Scholar 

  22. Bucaretchi F, Hyslop S, Vieira RJ, Toledo AS, Madureira PR, de Capitani EM. Bites by coral snakes (Micrurus spp.) in Campinas, state of Sao Paulo, southeastern Brazil. Rev Inst Med Trop Sao Paulo. 2006;48:141–5.

    Article  Google Scholar 

  23. Dart RC, Gustafson RA. Failure of electric shock treatment for rattlesnake envenomation. Ann Emerg Med. 1991 Jun 1;20(6):659–61.

    Article  CAS  Google Scholar 

  24. Welch EB, Gales BJ. Use of stun guns for venomous bites and stings: a review. Wild Environ Med. 2001 Jun 30;12(2):111–7.

    Article  Google Scholar 

  25. Cohen WR, Wetzel W, Kadish A. Local heat and cold application after eastern cottonmouth moccasin (Agkistrodon piscivorus) envenomation in the rat: effect on tissue injury. Toxicon. 1992;30(11):1383–6.

    Article  CAS  Google Scholar 

  26. Frank HA. Snakebite or frostbite: what are we doing? An evaluation of cryotherapy for envenomation. Calif med. 1971;114(5):25–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Toschlog EA, Bauer CR, Hall EL, Dart RC, Khatri V, Lavonas EJ. Surgical considerations in the management of pit viper snake envenomation. J Am Coll Surgeons. 2013;217(4):726–35.

    Article  Google Scholar 

  28. Alberts MB, Shalit M, LoGalbo F. Suction for venomous snakebite: a study of “mock venom” extraction in a human model. Ann Emerg Med. 2004 Feb 29;43(2):181–6.

    Article  Google Scholar 

  29. Bush SP, Hegewald KG, Green SM, Cardwell MD, Hayes WK. Effects of a negative pressure venom extraction device (extractor) on local tissue injury after artificial rattlesnake envenomation in a porcine model. Wild Environ Med. 2000 Sep 1;11(3):180–8.

    Article  CAS  Google Scholar 

  30. Bush SP. Snakebite suction devices don't remove venom: they just suck. Ann Emerg Med. 2004;43(2):187–8.

    Article  Google Scholar 

  31. German BT, Hack JB, Brewer K, Meggs WJ. Pressure-immobilization bandages delay toxicity in a porcine model of eastern coral snake (Micrurus fulvius fulvius) envenomation. Ann Emerg Med. 2005;45(6):603–8.

    Article  Google Scholar 

  32. Smyrnioudis ME, O’Rourke DP, Rosenbaum MD, Brewer KL, Meggs WJ. Long-term efficacy of pressure immobilization bandages in a porcine model of coral snake envenomation. Am J Emerg Med. 2014;32:1024–6.

    Article  Google Scholar 

  33. Kerrigan KR, Mertz BL, Nelson SJ, Dye JD. Antibiotic prophylaxis for pit viper envenomation: prospective, controlled trial. World J Surg. 1997 May 1;21(4):369–73.

    Article  CAS  Google Scholar 

  34. Ruha AM, Kang AM, Onisko NS, Greene S, Rohra R. Antibiotic use in the management of snake envenomation (abstract). J Med Toxicol. 2015;11(1):36–7.

    Google Scholar 

  35. Vital-Brazil O, Vieira RJ. Neostigmine in the treatment of snake accidents caused by Micrurus frontalis: report of two cases (1). Rev Inst Med Trop Sao Paulo. 1996;38:61–7.

    Article  CAS  Google Scholar 

  36. Gold BS. Neostigmine for the treatment of neurotoxicity following envenomation by the Asiatic cobra. Ann Emerg Med. 1996;28:87–9.

    Article  CAS  Google Scholar 

  37. Yang DC, Dobson J, Cochran C., Dashevsky D et. al. The bold and the beautiful: a neurotoxicity comparison of new world coral snakes in the Micruroides and Micrurus genera and relative neutralization by antivenom. Neurotox Res. 2017; 32:487–95. Antivenoms are more effective in envenomations from snakes from the same geographic region. The importance of this article is that not all antivenoms are equally effective in coral snake envenomations. Antivenoms prepared in Central American are more effective against Central American species, while South American coral snake envenomations are better treated with South American antivenoms.

    Article  CAS  Google Scholar 

  38. de Silva ARBP, Yamagushi IK, Morais JF, Higashi HG, et. al. Cross reactivity of different specific Micrurus antivenom sera with homologous and heterologous snake venoms. Toxicon. 2001; 39:949–953.

    Article  Google Scholar 

  39. de Roodt A, Paniagua-Solis JF, Dolab JA, EstevezRamírez, J, et. al. Effectiveness of two common antivenoms for North, Central, and South American Micrurus envenomations. J Toxicol Clin Toxicol 2004; 42:171–178.

  40. Wisniewski MS, Hill RE, Havey JM, Bogdan GM, Dart RC. Australian tiger snake (Notechis scutatus) and Mexican coral snake (Micrurus species) antivenoms prevent death from United States coral snake (Micrurus fulvius fulvius) venom in a mouse model. J Toxicol Clin Toxicol. 2003;41(1):7–10.

    Article  Google Scholar 

  41. Ramos HR, Vassao RC, de Roodt AR, Santos E Silva EC, et. al. Cross neutralization of coral snake venoms by commercial Australian snake antivenoms. Clin Toxicol (Phila). 2017; 55:33–39.

    Article  Google Scholar 

  42. Lewin M, Samuel S, Merkel J, Bickler P. Varespladib (LY315920) appears to be a potent, broad-spectrum, inhibitor of snake venom phospholipase A2 and a possible pre-referral treatment for envenomation. Toxins (Basel). 2016;8:248.

    Article  Google Scholar 

  43. Lewin MR, Gilliam LL, Gilliam J, Samuel SP, et. al. Delayed LY333013 (oral) and LY315920 (intravenous) reverse severe neurotoxicity and rescue juvenile pigs from lethal doses of Micrurus fulvius (Eastern Coral snake) venom. Toxins. 2018; 10:479.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer Greene.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Article is part of the Topical Collection on Hot Topics in Tropical Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greene, S. Coral Snake Envenomations in Central and South America. Curr Trop Med Rep 7, 11–16 (2020). https://doi.org/10.1007/s40475-020-00197-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-020-00197-z

Keywords

Navigation