Skip to main content
Log in

Enhancing Cognition with Theta Burst Stimulation

  • Neuromodulation (S Taylor, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Theta burst stimulation (TBS) protocols are believed to produce more reliable, longer-lasting effects on cortical dynamics and on behavior than other standard forms of transcranial magnetic stimulation (TMS). Most TBS experiments use stimulation to a targeted region to impair cognitive function, allowing for causal inferences between anatomical locations and cognitive processes to be drawn. However, this review covers a small but rapidly growing literature suggesting TBS can also benefit cognitive performance. These pro-cognitive effects have been observed in both healthy individuals and in clinical populations. While these data are promising, the available evidence also suggests the effects of TBS may be dose, state, and site specific. Overall, this line of research is of high interest for understanding how the brain mediates cognitive functions, investigating the potential plasticity of these neural mechanisms, and for developing treatments for the cognitive impairments found in many neuropsychiatric and neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol. 2000;10:232–7.

    Article  CAS  PubMed  Google Scholar 

  2. Walsh V, Ellison A, Battelli L, Cowey A. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proc R Soc Lond B. 1998;265:537–43.

    Article  CAS  Google Scholar 

  3. Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage. 2014;85(Pt 3):961–70.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Romie V, Driver J, Schyns PG, Thut G. Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol. 2011;21:334–7.

    Article  Google Scholar 

  5. Klimesch W, Sauseng P, Gerloff C. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci. 2003;17:1129–33.

    Article  PubMed  Google Scholar 

  6. Luber B, Kinnunen LH, Rakitin BC, Ellsasser R, Stern Y, Lisanby SH. Facilitation of performance in a working-memory task with rTMS stimulation of the precuneus: frequency and time-dependent effects. Brain Res. 2007;1128:120–9.

    Article  CAS  PubMed  Google Scholar 

  7. Gagnon G, Schneider C, Grondin S, Blanchet S. Enhancement of episodic memory in young and healthy adults: a paired-pulse TMS study on encoding and retrieval performance. Neurosci Lett. 2011;488(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  8. Kohler S, Paus T, Buckner RL, Milner B. Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI–rTMS study. J Cogn Neurosci. 2004;16(2):178–88.

    Article  PubMed  Google Scholar 

  9. Nicolo P, Ptak R, Guggisberg AG. Variability of behavioural responses to transcranial magnetic stimulation: origins and predictors. Neuropsychologia. 2015;74:137–44.

    Article  PubMed  Google Scholar 

  10. Lopez-Alonso V, Cheeran B, Rio-Rodriguez D, Fernandez-Del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation. Brain Stimul. 2014;7:372–80.

    Article  PubMed  Google Scholar 

  11. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation. J Physiol. 2010;588:2291–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hess G, Donoghue JP. Long-term potentiation and long-term depression of horizontal connections in rat motor cortex. Acta Neurobiol Exp (Warsz). 1996;56:397–405.

    CAS  Google Scholar 

  14. Huemmeke M, Eysel UT, Mittmann T. Metabotrophic glutamate receptors mediate expression of LTP in slices of rat visual. Eur J Neurosci. 2002;15:1641–5.

    Article  PubMed  Google Scholar 

  15. Larson J, Lynch G. Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science. 1986;232:985–8.

    Article  CAS  PubMed  Google Scholar 

  16. Vickery RM, Morris SH, Bindman LJ. Metabotropic glutamate receptors are involved in long-term potentiation in isolated slices of rat medial frontal cortex. J Neurophysiol. 1997;78:3039–46.

    CAS  PubMed  Google Scholar 

  17. Huang YZ, Chen RS, Rothwell JC, Wen HY. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118(5):1028–32.

    Article  CAS  PubMed  Google Scholar 

  18. Stagg CJ, Wylezinska M, Matthews PM, Johansen-Berg H, Jezzard P, Rothwell JC, et al. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol. 2009;101(6):2872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lismann J. Working memory: the importance of theta and gamma oscillations. Curr Biol. 2010;20(11):R490–2.

    Article  Google Scholar 

  20. Wischnewski M, Schutter DJ. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 2015;8(4):685–92. Quantitative review of the magnitude and time course of motor cortex excitability following cTBS and iTBS application.

    Article  PubMed  Google Scholar 

  21. Gamboa OL, Antal A, Moliadze V, Paulus W. Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation. Exp Brain Res. 2010;204(2):181–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nettekoven C, Volz LJ, Kutscha M, Pool EM, Rehme AK, Eickhoff SB, et al. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system. J Neurosci. 2014;34(20):6849–59. iTBS-fMRI study showing the effects of iTBS on cortical dynamics is dependent on the number of iTBS applications administered.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamke MR, Hall MG, Lye HF, Sale MV, Fenlon LR, Carroll TJ, et al. Visual attentional load influences plasticity in the human motor cortex. J Neurosci. 2012;32(20):7001–8.

    Article  CAS  PubMed  Google Scholar 

  24. Painter DR, Dux PE, Mattingley JB. Causal involvement of visual area MT in global feature-based enhancement but not contingent attentional capture. Neuroimage. 2015;118:90–102.

    Article  PubMed  Google Scholar 

  25. Tsang P, Jacobs MF, Lee KGH, Asmussen MJ, Zapallow CM, Nelson AJ. Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition. Clin Neurophysiol. 2014;125:2253–9.

    Article  PubMed  Google Scholar 

  26. Tupak SV, Dresler T, Badewien M, Hahn T, Ernst LH, Herrmann MJ, et al. Inhibitory transcranial magnetic theta burst stimulation attenuates prefrontal cortex oxygenation. Hum Brain Mapp. 2013;34:150–7.

    Article  PubMed  Google Scholar 

  27. Gratton C, Lee TG, Nomura EM, D’Esposito M. Perfusion MRI indexes variability in the functional brain effects of theta-burst transcranial magnetic stimulation. PLoS One. 2014;9(7), e101430.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci. 2014;34(36):12049–56. Demonstrates modulation of the default mode network with iTBS to cerebellar regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoy KE, Bailey N, Michael M, Fitzgibbon B, Rogasch NC, Saeki T, Fitzgerald PB, Enhancement of working memory and task-related oscillatory activity following intermittent theta burst stimulation in healthy controls. Cereb Cortex. 2015. Showed iTBS to left frontal cortex could improve 2-back accuracy and was accompanied by changes in theta and gamma power and theta connectivity between frontal and parietal channels.

  30. Cardenas-Morales L, Gron G, Kammer T. Exploring the after-effects of theta burst magnetic stimulation on the human motor cortex: a functional imaging study. Hum Brain Mapp. 2011;32(11):1948–60.

    Article  PubMed  Google Scholar 

  31. Lee TG, D’Esposito M. The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI-TMS study. J Neurosci. 2012;32(44):15458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rizk S, Ptak R, Nyffeler T, Schnider A, Guggisberg AG. Network mechanisms of responsiveness to continuous theta-burst stimulation. Eur J Neurosci. 2013;38(8):3230–8. An EEG study of the effects of cTBS to posterior parietal cortex on alpha coherence and spatial attention performance.

    Article  PubMed  Google Scholar 

  33. Hanlon CA, Canterberry M, Taylor JJ, DeVries W, Li X, Brown TR, et al. Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study. PLoS One. 2013;8(7), e67917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishikawa S, Matsunaga K, Nakanishi R, Kawahira K, Murayama N, Tsuji S, et al. Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol. 2007;118(5):1033–43.

    Article  PubMed  Google Scholar 

  35. Katayama T, Rothwell JC. Modulation of somatosensory evoked potentials using transcranial magnetic intermittent theta burst stimulation. Clin Neurophysiol. 2007;118(11):2506–11.

    Article  PubMed  Google Scholar 

  36. Premji A, Ziluk A, Nelson AJ. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation. BMC Neurosci. 2010;11:91.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Butts RJ, Kolar MB, Newman-Norlund RD. Enhanced motor skill acquisition in the non-dominant upper extremity using intermittent theta burst stimulation and transcranial direct current stimulation. Front Hum Neurosci. 2014;8:451.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Teo JT, Swayne OB, Cheeran B, Greenwood RJ, Rothwell JC. Human theta burst stimulation enhances subsequent motor learning and increases performance variability. Cereb Cortex. 2011;21(7):1627–38.

    Article  PubMed  Google Scholar 

  39. Conte A, Rocchi L, Nardella A, Dispenza S, Scontrini A, Khan N, et al. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans. PLoS One. 2012;7(3), e32979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ragert P, Franzkowiak S, Schwenkreis P, Tegenthoff M, Dinse HR. Improvement of tactile perception and enhancement of cortical excitability through intermittent theta burst rTMS over human primary somatosensory cortex. Exp Brain Res. 2008;184(1):1–11.

    Article  PubMed  Google Scholar 

  41. Lee TG, Blumenfeld RS, D’Esposito M. Disruption of dorsolateral but not ventrolateral prefrontal cortex improves unconscious perceptual memories. J Neurosci. 2013;33(32):13233–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galea JM, Albert NB, Ditye T, Miall RC. Disruption of the dorsolateral prefrontal cortex facilitates the consolidation of procedural skills. J Cogn Neurosci. 2009;22(6):1158–64.

    Article  Google Scholar 

  43. Debarnot U, Crepon B, Orriols E, Abram M, Charron S, Lion S, et al. Intermittent theta burst stimulation over left BA10 enhances virtual reality-based prospective memory in healthy aged subjects. Neurobiol Aging. 2015;36(8):2360–9. First study to report iTBS, but not cTBS, can improve prospective memory performance in healthy older adults.

    Article  PubMed  Google Scholar 

  44. Demeter E, Mirdamadi JL, Meehan SK, Taylor SF. Short theta burst stimulation to left frontal cortex prior to encoding enhances subsequent recognition memory. Cogn Affect Behav Neurosci. 2016.

  45. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011;21(14):1176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blumenfeld RS, Lee TG, D’Esposito M. The effects of lateral prefrontal transcranial magnetic stimulation on item memory encoding. Neuropsychologia. 2014;53:197–202.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Craik FI, Lockhart RS. Levels of processing: a framework for memory research. J Verbal Learn Verbal Behav. 1972;11(6):671–84.

    Article  Google Scholar 

  48. Kapur S, Craik FI, Tulving E, Wilson AA, Houle S, Brown GM. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect. Proc Natl Acad Sci U S A. 1994;91(6):2008–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Otten LJ, Henson RN, Rugg MD. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain. 2001;124(2):399–412.

    Article  CAS  PubMed  Google Scholar 

  50. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331(6157):585–9.

    Article  CAS  PubMed  Google Scholar 

  51. Vidal-Pineiro D, Martin-Trias P, Arenaza-Urquijo EM, Sala-Llonch R, Clemente IC, Mena-Sanchez I, et al. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging. Brain Stimul. 2014;7(2):287–96. Showed offline iTBS to left inferior gyrus did not improve memory performance, but did influence brain activations and functional connectivity during a memory encoding task in a state-dependent manner.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fleming SM, Dolan RJ. The neural basis of accurate meta-cognition. Phil Trans R Soc B. 2012;267:338–49.

    Google Scholar 

  53. Ryals AJ, Rogers LM, Gross EZ, Polnaszek KL, Voss JL. Associative recognition memory awareness improved by theta-burst stimulation of frontopolar cortex. Cereb Cortex. 2015. First study to report TBS can improve memory awareness, and adds to the evidence supporting a rostrocaudal hierarchy supporting memory awareness.

  54. Allen CP, Dunkley BT, Muthukumaraswamy SD, Edden R, Evans CJ, Sumner P, et al. Enhanced awareness followed reversible inhibition of human visual cortex: a combined TMS, MRS and MEG study. PLoS One. 2014;9(6), e100350. Uses cTBS to study the neurobiological mechanisms underlying consciousness. Includes magnetic resonance spectroscopy measures of occipital GABA concentrations pre- and post-TBS.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Waterson ML, Pack CC. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation. PLoS One. 2010;5, e10354.

    Article  Google Scholar 

  56. Kalla R, Muggleton NG, Cowey A, Walsh V. Human dorsolateral prefrontal cortex is involved in visual search for conjunctions but not features: a theta TMS study. Cortex. 2009;45(9):1085–90.

    Article  PubMed  Google Scholar 

  57. Wolfe JM. Guided search 2.0: a revised model of visual search. Psychonomic Bull Rev. 1994;1:202–38.

    Article  CAS  Google Scholar 

  58. Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psych. 1980;12:97–136.

    Article  CAS  Google Scholar 

  59. Desimone R, Duncan J. Neural mechanism of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.

    Article  CAS  PubMed  Google Scholar 

  60. Buracas GT, Albright TD. Modulation of neuronal responses during covert search for visual feature conjunctions. Proc Natl Acad Sci U S A. 2009;106:16853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saenz M, Buracas GT, Boynton GM. Global effects of feature-based attention in human visual cortex. Nat Neurosci. 2002;5:631–2.

    Article  CAS  PubMed  Google Scholar 

  62. Müller MM, Picton TW, Valdes-Sosa P, RIera J, Tedder-Sulejurvi WA, Hillyard SA. Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28 Hz range. Cogn Brain Res. 1998;6:249–61.

    Article  Google Scholar 

  63. Xu G, Lan Y, Huang D, Chen S, Chen L, Zeng J, et al. The study on the frontoparietal networks by continuous theta burst stimulation in healthy human subjects. Behav Brain Res. 2013;240:60–8.

    Article  PubMed  Google Scholar 

  64. Cazzoli D, Wurtz P, Muri RM, Hess CW, Nyffeler T. Interhemispheric balance of overt attention: a theta burst stimulation study. Eur J Neurosci. 2009;29(6):1271–6.

    Article  PubMed  Google Scholar 

  65. Restle J, Murakami T, Ziemann U. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus. Neuropsychologia. 2012;50(8):2026–31.

    Article  PubMed  Google Scholar 

  66. Ott DV, Ullsperger M, Jocham G, Neumann J, Klein TA. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias. Neuroimage. 2011;57(2):617–23. Shows cTBS to left dlPFC can modulate dopaminergic regions and reward sensitivity.

    Article  PubMed  Google Scholar 

  67. Ko JH, Monchi O, Ptito A, Bloomfield P, Houle S, Strafella AP. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[(11C]raclopride PET study. Eur J Neurosci. 2008;28:2147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Legon W, Punzell S, Dowlati E, Adams SE, Stiles AB, Moran RJ. Altered prefrontal excitation/inhibition balance and prefrontal output: markers of aging in human memory networks. Cereb Cortex. 2015.

  69. Nardone R, Langthaler PB, Holler Y, Bathke A, Frey VN, Brigo F, et al. Modulation of non-painful phantom sensation in subjects with spinal cord injury by means of rTMS. Brain Res Bull. 2015;118:82–6.

    Article  PubMed  Google Scholar 

  70. Cazzoli D, Muri RM, Hess CW, Nyffeler T. Treatment of hemispatial neglect by means of rTMS—a review. Restor Neurol Neurosci. 2010;28(4):499–510.

    PubMed  Google Scholar 

  71. Bakker N, Shahab S, Giacobbe P, Blumberger DM, Daskalakis ZJ, Kennedy SH, et al. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimul. 2015;8(2):208–15.

    Article  PubMed  Google Scholar 

  72. Koch G, Di Lorenzo F, Bonnì S, Ponzo V, Caltagirone C, Martorana A. Impaired LTP- but not LTD-like cortical plasticity in Alzheimer’s disease patients. J Alzheimers Dis. 2012;31(3):593–9.

    CAS  PubMed  Google Scholar 

  73. Kindler J, Homan P, Flury R, Strik W, Dierks T, Hubl D. Theta burst transcranial magnetic stimulation for the treatment of auditory verbal hallucinations: results of a randomized controlled study. Psychiatry Res. 2013;209(1):114–7.

    Article  PubMed  Google Scholar 

  74. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology. 2013;64:566–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chechlacz M, Humphreys GW, Sotiropoulos SN, Kennard C, Cazzoli D. Structural organization of the corpus callosum predicts attentional shifts after continuous theta burst stimulation. J Neurosci. 2015;35(46):15353–68. Demonstrates variability in corpus callosum structural organization can account for individual differences in spatial attention performance following cTBS. Relevant to studies of spatial neglect.

    Article  PubMed  Google Scholar 

  76. Cazzoli D, Rosenthal CR, Kennard C, Zito GA, Hopfner S, Muri RM, et al. Theta burst stimulation improves overt visual search in spatial neglect independently of attentional load. Cortex. 2015;73:317–29. Important demonstration cTBS can improve spatial attention under both low- and high-attentional loads in neglect patients.

    Article  PubMed  Google Scholar 

  77. Fu W, Song W, Zhang Y, Yang Y, Huo S, Zhang R, et al. Long-term effects of continuous theta-burst stimulation in visuospatial neglect. J Int Med Res. 2015;43(2):196–203.

    Article  PubMed  Google Scholar 

  78. Nyffeler T, Cazzoli D, Hess CW, Muri RM. One session of repeated parietal theta burst stimulation trains induces long-lasting improvement of visual neglect. Stroke. 2009;40(8):2791–6.

    Article  PubMed  Google Scholar 

  79. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62(11):1208–16.

    Article  PubMed  Google Scholar 

  80. Cheng CM, Juan CH, Chen MH, Chang CF, Lu HJ, Su TP, et al. Different forms of prefrontal theta burst stimulation for executive function of medication- resistant depression: evidence from a randomized sham-controlled study. Prog Neuropsychopharmacol Biol Psychiatry. 2015;66:35–40. One of the few studies of TBS’s effects on cognitive performance in depressed patients. Found TBS could improve executive function performance and that these effects were dissociable from TBS’s antidepressant effects.

    Article  PubMed  Google Scholar 

  81. Chistyakov AV, Kreinin B, Marmor S, Kaplan B, Khatib A, Darawsheh N, et al. Preliminary assessment of the therapeutic efficacy of continuous theta-burst magnetic stimulation (cTBS) in major depression: a double-blind sham-controlled study. J Affect Disord. 2015;170:225–9.

    Article  PubMed  Google Scholar 

  82. Knight RT. Principles of frontal lobe function, ed. D.T. Stuss. 2002, Oxford [u.a.]: Oxford Univ. Press.

  83. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85(3):895–908.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise Demeter.

Ethics declarations

Conflict of Interest

Dr. Elise Demeter declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Neuromodulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demeter, E. Enhancing Cognition with Theta Burst Stimulation. Curr Behav Neurosci Rep 3, 87–94 (2016). https://doi.org/10.1007/s40473-016-0072-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-016-0072-7

Keywords

Navigation