Skip to main content

Advertisement

Log in

Composite Vascularized Allograft Machine Preservation: State of the Art

  • Machine Preservation of the Liver (C Miller and C Quintini, Section Editors)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we aim to introduce the concept of machine perfusion of vascularized composite allografts (VCAs). We briefly discuss the basic elements of the circuit design, role of the temperature during the perfusion, types of perfusate, and future trends in this field.

Recent Findings

Several large animal models have demonstrated the efficacy of machine perfusion over static cold storage. While the maximum allowable ischemia time in VCA is 4–6 h with cold storage method, promising results have been achieved in extended preservation times up to 24 h in machine perfusion technique.

Summary

Current evidence shows that machine perfusion of VCA can overcome the limitations of static cold storage technique and not only can be considered as a preservation but also as a diagnostic and therapeutic method for the practice of replantation/transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lindbergh CA. An apparatus for the culture of whole organs. J Exp Med. 1935;62(3):409–31. https://doi.org/10.1084/jem.62.3.409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Delorme TL, Shaw RS, Austen WG. MUSCULO-skeletal functions in the amputated perfused human being limb. Surg Forum. 1964;15:450–2.

    CAS  PubMed  Google Scholar 

  3. Ceresa CDL, Nasralla D, Jassem W. Normothermic machine preservation of the liver: state of the art. Curr Transplant Rep. 2018;5(1):104–10. https://doi.org/10.1007/s40472-018-0186-9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kuan KG, Wee MN, Chung WY, Kumar R, Mees ST, Dennison A, et al. Extracorporeal machine perfusion of the pancreas: technical aspects and its clinical implications--a systematic review of experimental models. Transplant Rev (Orlando, Fla). 2016;30(1):31–47. https://doi.org/10.1016/j.trre.2015.06.002.

    Article  Google Scholar 

  5. Domingo-Pech J, Garriga JM, Toran N, Rusinol M, Girvent F, Rosines D, et al. Preservation of the amputated canine hind limb by extracorporeal perfusion. Int Orthop. 1991;15(4):289–91.

    Article  CAS  Google Scholar 

  6. Gordon L, Levinsohn DG, Borowsky CD, Manojlovic RD, Sessler DI, Weiner MW, et al. Improved preservation of skeletal muscle in amputated limbs using pulsatile hypothermic perfusion with University of Wisconsin solution. A preliminary study. J Bone Joint Surg Am. 1992;74(9):1358–66.

    Article  CAS  Google Scholar 

  7. Yabe Y, Ishiguro N, Shimizu T, Tamura Y, Wakabayashi T, Miura T. Morphologic and metabolic study of the effect of oxygenated perfluorochemical perfusion on amputated rabbit limbs. J Reconstr Microsurg. 1994;10(3):185–91. https://doi.org/10.1055/s-2007-1006586.

    Article  CAS  PubMed  Google Scholar 

  8. Wagner SM, Nogueira AC, Paul M, Heydeck D, Klug S, Christ B. The isolated normothermic hemoperfused porcine forelimb as a test system for transdermal absorption studies. J Artif Organs. 2003;6(3):183–91. https://doi.org/10.1007/s10047-003-0229-5.

    Article  CAS  PubMed  Google Scholar 

  9. Messner F, Grahammer J, Hautz T, Brandacher G, Schneeberger S. Ischemia/reperfusion injury in vascularized tissue allotransplantation: tissue damage and clinical relevance. Curr Opin Organ Transplant. 2016;21(5):503–9. https://doi.org/10.1097/mot.0000000000000343.

    Article  CAS  PubMed  Google Scholar 

  10. Burlage LC, Tessier SN, Etra JW, Uygun K, Brandacher G. Advances in machine perfusion, organ preservation, and cryobiology: potential impact on vascularized composite allotransplantation. Curr Opin Organ Transplant. 2018;23(5):561–7. https://doi.org/10.1097/mot.0000000000000567.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Siemionow M, Gharb BB, Rampazzo A. Successes and lessons learned after more than a decade of upper extremity and face transplantation. Curr Opin Organ Transplant. 2013;18(6):633–9. https://doi.org/10.1097/mot.0000000000000021.

    Article  PubMed  Google Scholar 

  12. Herzberg G, Weppe F, Masson N, Gueffier X, Erhard L. Clinical evaluation of two bilateral hand allotransplantations at six and three years follow-up. Chir Main. 2008;27(2–3):109–17. https://doi.org/10.1016/j.main.2008.02.002.

    Article  CAS  PubMed  Google Scholar 

  13. Piza-Katzer H, Ninkovic M, Pechlaner S, Gabl M, Ninkovic M, Hussl H. Double hand transplantation: functional outcome after 18 months. J Hand Surg (Edinburgh, Scotland). 2002;27(4):385–90.

    Article  CAS  Google Scholar 

  14. Landin L, Cavadas PC, Garcia-Cosmes P, Thione A, Vera-Sempere F. Perioperative ischemic injury and fibrotic degeneration of muscle in a forearm allograft: functional follow-up at 32 months post transplantation. Ann Plast Surg. 2011;66(2):202–9. https://doi.org/10.1097/SAP.0b013e318206a365.

    Article  CAS  PubMed  Google Scholar 

  15. Halloran P, Mathew T, Tomlanovich S, Groth C, Hooftman L, Barker C. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The international mycophenolate mofetil renal transplant study groups. Transplantation. 1997;63(1):39–47.

    Article  CAS  Google Scholar 

  16. Pradka SP, Ong YS, Zhang Y, Davis SJ, Baccarani A, Messmer C, et al. Increased signs of acute rejection with ischemic time in a rat musculocutaneous allotransplant model. Transplant Proc. 2009;41(2):531–6. https://doi.org/10.1016/j.transproceed.2009.01.021.

    Article  CAS  PubMed  Google Scholar 

  17. Cherikh WS, Cendales LC, Wholley CL, Wainright J, Gorantla VS, Klassen DK, et al. Vascularized composite allotransplantation in the United States: a descriptive analysis of the organ procurement and transplantation network data. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2019;19(3):865–75. https://doi.org/10.1111/ajt.15062.

    Article  Google Scholar 

  18. Van Raemdonck D, Rega F, Rex S, Neyrinck A. Machine perfusion of thoracic organs. J Thorac Dis. 2018;10(Suppl 8):S910–s23. https://doi.org/10.21037/jtd.2018.02.85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thuong M, Petruzzo P, Landin L, Mahillo B, Kay S, Testelin S, et al. Vascularized composite allotransplantation - a council of Europe position paper. Transpl Int. 2019;32(3):233–40. https://doi.org/10.1111/tri.13370.

    Article  PubMed  Google Scholar 

  20. Arudchelvam J, Ratnayake A, Wijesinghe N, Kariyawasam L, Rajakrishna P, Anver S. Trans-femoral lower limb transplantation in a Sri Lankan patient: a case report and surgical technique. Ceylon Med J. 2018;63(1):35–6. https://doi.org/10.4038/cmj.v63i1.8624.

    Article  CAS  PubMed  Google Scholar 

  21. Diaz-Siso JR, Borab ZM, Plana NM, Parent B, Stranix JT, Rodriguez ED. Vascularized composite allotransplantation: alternatives and catch-22s. Plast Reconstr Surg. 2018;142(5):1320–6. https://doi.org/10.1097/prs.0000000000004855.

    Article  CAS  PubMed  Google Scholar 

  22. Krezdorn N, Sakthivel D, Turk M, Aycart MA, Tasigiorgos S, Bueno EM, et al. Reduced hypoxia-related genes in porcine limbs in ex vivo hypothermic perfusion versus cold storage. J Surg Res. 2018;232:137–45. https://doi.org/10.1016/j.jss.2018.05.067.

    Article  CAS  PubMed  Google Scholar 

  23. •• Kueckelhaus M, Dermietzel A, Alhefzi M, Aycart MA, Fischer S, Krezdorn N, et al. Acellular hypothermic extracorporeal perfusion extends allowable ischemia time in a porcine whole limb replantation model. Plast Reconstr Surg. 2017;139(4):922e–32e. https://doi.org/10.1097/prs.0000000000003208This is significant because they have replanted/transplanted the perfused VCA which demonstrate the ultimate fate of the perfused allograft.

    Article  CAS  PubMed  Google Scholar 

  24. •• Ozer K, Rojas-Pena A, Mendias CL, Bryner BS, Toomasian C, Bartlett RH. The effect of ex situ perfusion in a swine limb vascularized composite tissue allograft on survival up to 24 hours. J Hand Surg. 2016;41(1):3–12. https://doi.org/10.1016/j.jhsa.2015.11.003This is significant because they have replanted/transplanted the perfused VCA which demonstrate the ultimate fate of the perfused allograft.

    Article  Google Scholar 

  25. • Kueckelhaus M, Puscz F, Dermietzel A, Dadras M, Fischer S, Krezdorn N, et al. Extracorporeal perfusion in vascularized composite allotransplantation: current concepts and future prospects. Ann Plast Surg. 2018;80(6):669–78. https://doi.org/10.1097/sap.0000000000001477This review paper is also recommended since it provides valuable information on VCA machine perfusion.

    Article  CAS  PubMed  Google Scholar 

  26. Slater NJ, Zegers HJH, Küsters B, Beune T, van Swieten HA, Ulrich DJO. Ex-vivo oxygenated perfusion of free flaps during ischemia time: a feasibility study in a porcine model and preliminary results. J Surg Res. 2016;205(2):292–5. https://doi.org/10.1016/j.jss.2016.06.096.

    Article  PubMed  Google Scholar 

  27. Karangwa SA, Dutkowski P, Fontes P, Friend PJ, Guarrera JV, Markmann JF, et al. Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2016;16(10):2932–42. https://doi.org/10.1111/ajt.13843.

    Article  CAS  Google Scholar 

  28. Chai YC, Dang GX, He HQ, Shi JH, Zhang HK, Zhang RT, et al. Hypothermic machine perfusion with metformin-University of Wisconsin solution for ex vivo preservation of standard and marginal liver grafts in a rat model. World J Gastroenterol. 2017;23(40):7221–31. https://doi.org/10.3748/wjg.v23.i40.7221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christopher E. Hypothermic machine perfusion of composite tissues: Virginia Tech; 2017.

  30. Kruit AS, Schreinemachers M-CJ, Koers EJ, Zegers HJ, Hummelink S, Ulrich DJ. Successful long-term extracorporeal perfusion of free musculocutaneous flaps in a porcine model. J Surg Res. 2019;235:113–23.

    Article  Google Scholar 

  31. Kueckelhaus M, Fischer S, Sisk G, Kiwanuka H, Bueno EM, Dermietzel A, et al. A Mobile extracorporeal extremity salvage system for replantation and transplantation. Ann Plast Surg. 2016;76(3):355–60. https://doi.org/10.1097/sap.0000000000000681.

    Article  CAS  PubMed  Google Scholar 

  32. Robbins NL, Wordsworth MJ, Bijaya K, Breidenbach WC. American Society for Reconstructive Transplantation Conference Abstracts 2018. SAGE Open Med. 2018;6:205031211880866. https://doi.org/10.1177/2050312118808661.

    Article  Google Scholar 

  33. Fries CA, Villamaria CY, Spencer JR, Lawson S, Wang L, Raj T, et al. A hyperbaric warm perfusion system preserves tissue composites ex vivo and delays the onset of acute rejection. J Reconstr Microsurg. 2019;35(2):97–107. https://doi.org/10.1055/s-0038-1667298.

    Article  PubMed  Google Scholar 

  34. Schweizer R, Oksuz S, Banan B, Gorantla V, Fontes P. Abstract: 8.30 Subnormothermic machine perfusion (Snmp) with a novel hemoglobin-based oxygen carrier (Hboc) solution for ex vivo preservation in vascularized composite Allotransplantation (Vca). Plast Reconstr Surg Glob Open. 2017;5(1 Suppl):25–6. https://doi.org/10.1097/01.GOX.0000512441.69907.aa.

    Article  PubMed Central  Google Scholar 

  35. Abdelhafez MM, Shaw J, Sutter D, Schnider J, Banz Y, Jenni H, et al. Effect of C1-INH on ischemia/reperfusion injury in a porcine limb ex vivo perfusion model. Mol Immunol. 2017;88:116–24. https://doi.org/10.1016/j.molimm.2017.06.021.

    Article  CAS  PubMed  Google Scholar 

  36. Amin K, Stone JP, Edge RJ, Parkes J, Kerr J, Joseph L, et al. Optimization of an ex-vivo limb perfusion protocol for vascularized composite allograft transplantation. Transplantation. 2018;102:S436–S7. https://doi.org/10.1097/01.tp.0000543221.37650.c0.

    Article  Google Scholar 

  37. Duraes EFR, Madajka M, Frautschi R, Soliman B, Cakmakoglu C, Barnett A, et al. Developing a protocol for normothermic ex-situ limb perfusion. Microsurgery. 2018;38(2):185–94. https://doi.org/10.1002/micr.30252.

    Article  PubMed  Google Scholar 

  38. Gok E, Alghanem F, Moon R, Guy E, Rojas-Pena A, Bartlett RH, et al. Development of an ex-situ limb perfusion system for a rodent model. ASAIO J. 2019;65(2):167–72. https://doi.org/10.1097/mat.0000000000000786.

    Article  PubMed  Google Scholar 

  39. Ozer K, Rojas-Pena A, Mendias CL, Bryner B, Toomasian C, Bartlett RH. Ex situ limb perfusion system to extend vascularized composite tissue allograft survival in swine. Transplantation. 2015;99(10):2095–101. https://doi.org/10.1097/tp.0000000000000756.

    Article  PubMed  Google Scholar 

  40. Puga Yung G, Bongoni AK, Pradier A, Madelon N, Papaserafeim M, Sfriso R, et al. Release of pig leukocytes and reduced human NK cell recruitment during ex vivo perfusion of HLA-E/human CD46 double-transgenic pig limbs with human blood. Xenotransplantation. 2018;25(1). https://doi.org/10.1111/xen.12357.

  41. Werner NL, Alghanem F, Rakestraw SL, Sarver DC, Nicely B, Pietroski RE, et al. Ex situ perfusion of human limb allografts for 24 hours. Transplantation. 2017;101(3):e68–74. https://doi.org/10.1097/tp.0000000000001500.

    Article  PubMed  Google Scholar 

  42. Amin KR, Wong JKF, Fildes JE. Strategies to reduce ischemia reperfusion injury in vascularized composite allotransplantation of the limb. J Hand Surg. 2017;42(12):1019–24. https://doi.org/10.1016/j.jhsa.2017.09.013.

    Article  Google Scholar 

  43. Constantinescu MA, Knall E, Xu X, Kiermeir DM, Jenni H, Gygax E, et al. Preservation of amputated extremities by extracorporeal blood perfusion; a feasibility study in a porcine model. J Surg Res. 2011;171(1):291–9. https://doi.org/10.1016/j.jss.2010.01.040.

    Article  PubMed  Google Scholar 

  44. Kruit AS, Winters H, van Luijk J, Schreinemachers MJM, Ulrich DJO. Current insights into extracorporeal perfusion of free tissue flaps and extremities: a systematic review and data synthesis. J Surg Res. 2018;227:7–16. https://doi.org/10.1016/j.jss.2018.01.023.

    Article  PubMed  Google Scholar 

  45. Barbas AS, Goldaracena N, Dib MJ, Selzner M. Ex-vivo liver perfusion for organ preservation: Recent advances in the field. Transplant Rev (Orlando). 2016;30(3):154–60. https://doi.org/10.1016/j.trre.2016.03.002.

    Article  CAS  Google Scholar 

  46. Patel K, Smith TB, Neil DAH, Thakker A, Tsuchiya Y, Higgs EB, et al. The effects of oxygenation on ex vivo kidneys undergoing hypothermic machine perfusion. Transplantation. 2019;103(2):314–22. https://doi.org/10.1097/tp.0000000000002542.

    Article  CAS  PubMed  Google Scholar 

  47. Thuillier R, Allain G, Celhay O, Hebrard W, Barrou B, Badet L, et al. Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors. J Surg Res. 2013;184(2):1174–81. https://doi.org/10.1016/j.jss.2013.04.071.

    Article  PubMed  Google Scholar 

  48. Wu KY, Lawson SD, Wang LC, Tahk S, Robbins NL, Wordsworth M, et al. Ex vivo hyperbaric normothermic perfusion for up to 14 hours mitigates reperfusion injury in porcine vascular composite allotransplantation. J Am Coll Surg. 2017;225(4):S201–S2. https://doi.org/10.1016/j.jamcollsurg.2017.07.462.

    Article  Google Scholar 

  49. Chen JY, Scerbo M, Kramer G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics (Sao Paulo). 2009;64(8):803–13. https://doi.org/10.1590/s1807-59322009000800016.

    Article  Google Scholar 

  50. Duehrkop C, Rieben R. Ischemia/reperfusion injury: effect of simultaneous inhibition of plasma cascade systems versus specific complement inhibition. Biochem Pharmacol. 2014;88(1):12–22. https://doi.org/10.1016/j.bcp.2013.12.013.

    Article  CAS  PubMed  Google Scholar 

  51. Burlage L, Lellouch A, Tessier S, Pendexter C, Cronin S, Schol I et al. Ex-vivo subnormothermic oxygenated machine perfusion of rodent hindlimb: feasibility study to elongate preservation time of vascularized composite allograft. 2018.

  52. Niemi TT, Miyashita R, Yamakage M. Colloid solutions: a clinical update. J Anesth. 2010;24(6):913–25. https://doi.org/10.1007/s00540-010-1034-y.

    Article  PubMed  Google Scholar 

  53. Gould MK, Garcia DA, Wren SM, Karanicolas PJ, Arcelus JI, Heit JA, et al. Prevention of VTE in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e227S–e77S. https://doi.org/10.1378/chest.11-2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gajanayake T, Sawitzki B, Matozan K, Korchagina EY, Lehmann M, Volk HD, et al. Dextran sulfate facilitates anti-CD4 mAb-induced long-term rat cardiac allograft survival after prolonged cold ischemia. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(6):1151–62. https://doi.org/10.1111/j.1600-6143.2008.02239.x.

    Article  CAS  Google Scholar 

  55. •• Wolff KD, Mucke T, von Bomhard A, Ritschl LM, Schneider J, Humbs M, et al. Free flap transplantation using an extracorporeal perfusion device: first three cases. J Craniomaxillofac Surg. 2016;44(2):148–54. https://doi.org/10.1016/j.jcms.2015.11.007The study is important since it is the only clinical study in which the concept of machine perfusion for VCA has been utilized.

    Article  PubMed  Google Scholar 

  56. Taeger CD, Prabst K, Beier JP, Meyer A, Horch RE. Extracorporeal free flap perfusion in case of prolonged ischemia time. Plast Reconstr Surg Glob Open. 2016;4(4):e682. https://doi.org/10.1097/gox.0000000000000672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krezdorn N, Tasigiorgos S, Wo L, Turk M, Lopdrup R, Kiwanuka H et al. Tissue conservation for transplantation. Innovative Surgical Sciences 2017. p. 171.

  58. Pemberton M, Anderson G, Vetvicka V, Justus DE, Ross GD. Microvascular effects of complement blockade with soluble recombinant CR1 on ischemia/reperfusion injury of skeletal muscle. J Immunol. 1993;150(11):5104–13.

    CAS  PubMed  Google Scholar 

  59. Hu C, Li L, Ding P, Li L, Ge X, Zheng L, et al. Complement inhibitor CRIg/FH ameliorates renal ischemia reperfusion injury via activation of PI3K/AKT signaling. J Immunol. 2018;201(12):3717–30. https://doi.org/10.4049/jimmunol.1800987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen J, Crispin JC, Dalle Lucca J, Tsokos GC. A novel inhibitor of the alternative pathway of complement attenuates intestinal ischemia/reperfusion-induced injury. J Surg Res. 2011;167(2):e131–6. https://doi.org/10.1016/j.jss.2009.05.041.

    Article  CAS  PubMed  Google Scholar 

  61. Lewis AG, Kohl G, Ma Q, Devarajan P, Kohl J. Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin Exp Immunol. 2008;153(1):117–26. https://doi.org/10.1111/j.1365-2249.2008.03678.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pushpakumar SB, Perez-Abadia G, Soni C, Wan R, Todnem N, Patibandla PK, et al. Enhancing complement control on endothelial barrier reduces renal post-ischemia dysfunction. J Surg Res. 2011;170(2):e263–70. https://doi.org/10.1016/j.jss.2011.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Durigutto P, Sblattero D, Biffi S, De Maso L, Garrovo C, Baj G, et al. Targeted delivery of neutralizing anti-C5 antibody to renal endothelium prevents complement-dependent tissue damage. Front Immunol. 2017;8:1093. https://doi.org/10.3389/fimmu.2017.01093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sleiman M, Lei B, Cheng Q, Tomlinson S, Atkinson C. Perfusion of vascularized composite allografts with a complement inhibitor protects against brain death induced injury and IRI. 2018.

  65. Patel H, Smith RA, Sacks SH, Zhou W. Therapeutic strategy with a membrane-localizing complement regulator to increase the number of usable donor organs after prolonged cold storage. J Am Soc Nephrol. 2006;17(4):1102–11. https://doi.org/10.1681/asn.2005101116.

    Article  CAS  PubMed  Google Scholar 

  66. Kassimatis T, Qasem A, Douiri A, Ryan EG, Rebollo-Mesa I, Nichols LL, et al. A double-blind randomised controlled investigation into the efficacy of Mirococept (APT070) for preventing ischaemia reperfusion injury in the kidney allograft (EMPIRIKAL): study protocol for a randomised controlled trial. Trials. 2017;18(1):255. https://doi.org/10.1186/s13063-017-1972-x.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cheng F, Zhang Q, Yan FF, Wan JF, Lin CS. Lutein protects against ischemia/reperfusion injury in rat skeletal muscle by modulating oxidative stress and inflammation. Immunopharmacol Immunotoxicol. 2015;37(4):329–34.

    Article  Google Scholar 

  68. Wang XT, Tian Y, Xu WX, Cui LH, Xiang SY, Lu SC. Protective effects of modeled superoxide dismutase coordination compound (MSODa) against ischemia/reperfusion injury in rat skeletal muscle. Cell Physiol Biochem. 2015;37(2):465–76. https://doi.org/10.1159/000430369.

    Article  CAS  PubMed  Google Scholar 

  69. Dong X, Xing Q, Li Y, Han X, Sun L. Dexmedetomidine protects against ischemia-reperfusion injury in rat skeletal muscle. J Surg Res. 2014;186(1):240–5. https://doi.org/10.1016/j.jss.2013.07.052.

    Article  CAS  PubMed  Google Scholar 

  70. Tran TP, Tu H, Pipinos II, Muelleman RL, Albadawi H, Li YL. Tourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles: involvement of superoxide. Eur J Pharmacol. 2011;650(1):328–34. https://doi.org/10.1016/j.ejphar.2010.10.037.

    Article  CAS  PubMed  Google Scholar 

  71. Bolcal C, Yildirim V, Doganci S, Sargin M, Aydin A, Eken A, et al. Protective effects of antioxidant medications on limb ischemia reperfusion injury. J Surg Res. 2007;139(2):274–9. https://doi.org/10.1016/j.jss.2006.10.043.

    Article  CAS  PubMed  Google Scholar 

  72. Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol. 1997;58(2):95–117.

    Article  CAS  Google Scholar 

  73. McLaren AJ, Friend PJ. Trends in organ preservation. Transpl Int. 2003;16(10):701–8. https://doi.org/10.1007/s00147-003-0659-2.

    Article  PubMed  Google Scholar 

  74. Kuwaki K, Komatsu K, Sohma H, Abe T. Improvement of ischaemia-reperfusion injury by lazaroid U74389G in rat lung transplantation model. Scand Cardiovasc J. 2000;34(2):209–12.

    Article  CAS  Google Scholar 

  75. Mak IT, Boehme P, Weglicki WB. Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Correlation of protection with preservation of glutathione levels. Circ Res. 1992;70(6):1099–103.

    Article  CAS  Google Scholar 

  76. Shoskes D, Lapierre C, Cruz-Correa M, Muruve N, Rosario R, Fromkin B, et al. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial. Transplantation. 2005;80(11):1556–9.

    Article  CAS  Google Scholar 

  77. Tuuminen R, Syrjala S, Krebs R, Keranen MA, Koli K, Abo-Ramadan U, et al. Donor simvastatin treatment abolishes rat cardiac allograft ischemia/reperfusion injury and chronic rejection through microvascular protection. Circulation. 2011;124(10):1138–50. https://doi.org/10.1161/circulationaha.110.005249.

    Article  CAS  PubMed  Google Scholar 

  78. Russo L, Gracia-Sancho J, Garcia-Caldero H, Marrone G, Garcia-Pagan JC, Garcia-Cardena G, et al. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology. 2012;55(3):921–30. https://doi.org/10.1002/hep.24755.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao Y, Feng Q, Huang Z, Li W, Chen B, Jiang L, et al. Simvastatin inhibits inflammation in ischemia-reperfusion injury. Inflammation. 2014;37(5):1865–75. https://doi.org/10.1007/s10753-014-9918-x.

    Article  CAS  PubMed  Google Scholar 

  80. Hamaoui K, Aftab A, Gowers S, Boutelle M, Cook T, Rudd D, et al. An ex vivo comparison of adenosine and lidocaine solution and University of Wisconsin solution for hypothermic machine perfusion of porcine kidneys: potential for development. J Surg Res. 2017;208:219–29. https://doi.org/10.1016/j.jss.2016.08.068.

    Article  CAS  PubMed  Google Scholar 

  81. Dillon JP, Laing AJ, Cahill RA, O'Brien GC, Street JT, Wang JH, et al. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle. J Orthop Res. 2005;23(6):1454–9. https://doi.org/10.1016/j.orthres.2005.04.009.1100230631.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang EW, Fang T, Arnold PB, Songcharoen SJ, Lineaweaver WC, Zhang F. The effect of activated protein C on attenuation of ischemia-reperfusion injury in a rat muscle flap model. Ann Plast Surg. 2015;75(4):448–54. https://doi.org/10.1097/sap.0000000000000118.

    Article  CAS  PubMed  Google Scholar 

  83. El-Gibaly AM, Scheuer C, Menger MD, Vollmar B. Improvement of rat liver graft quality by pifithrin-alpha-mediated inhibition of hepatocyte necrapoptosis. Hepatology. 2004;39(6):1553–62. https://doi.org/10.1002/hep.20243.

    Article  CAS  PubMed  Google Scholar 

  84. Hunter RL, Luo AZ, Zhang R, Kozar RA, Moore FA. Poloxamer 188 inhibition of ischemia/reperfusion injury: evidence for a novel anti-adhesive mechanism. Ann Clin Lab Sci. 2010;40(2):115–25.

    CAS  PubMed  Google Scholar 

  85. Caumartin Y, Stephen J, Deng JP, Lian D, Lan Z, Liu W, et al. Carbon monoxide-releasing molecules protect against ischemia-reperfusion injury during kidney transplantation. Kidney Int. 2011;79(10):1080–9. https://doi.org/10.1038/ki.2010.542.

    Article  CAS  PubMed  Google Scholar 

  86. Huang T, Wang W, Tu C, Yang Z, Bramwell D, Sun X. Hydrogen-rich saline attenuates ischemia-reperfusion injury in skeletal muscle. J Surg Res. 2015;194(2):471–80. https://doi.org/10.1016/j.jss.2014.12.016.

    Article  CAS  PubMed  Google Scholar 

  87. Song K, Zhang M, Hu J, Liu Y, Liu Y, Wang Y, et al. Methane-rich saline attenuates ischemia/reperfusion injury of abdominal skin flaps in rats via regulating apoptosis level. BMC Surg. 2015;15:92. https://doi.org/10.1186/s12893-015-0075-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Juriasingani S, Akbari M, Chan JY, Whiteman M, Sener A. H2S supplementation: a novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide. 2018;81:57–66. https://doi.org/10.1016/j.niox.2018.10.004.

    Article  CAS  PubMed  Google Scholar 

  89. Zacherl J, Bock S, Feussner H, Erhardt W, Siewert JR, Stangl M. Periarterial application of papaverine during laparoscopic donor nephrectomy improves early graft function after kidney transplantation in pigs. Surg Endosc. 2004;18(3):417–20. https://doi.org/10.1007/s00464-003-8912-4.

    Article  CAS  PubMed  Google Scholar 

  90. Tabka D, Bejaoui M, Javellaud J, Achard JM, Ben Abdennebi H. Angiotensin IV improves subnormothermic machine perfusion preservation of rat liver graft. Biomed Pharmacother. 2018;104:841–7. https://doi.org/10.1016/j.biopha.2018.02.080.

    Article  CAS  PubMed  Google Scholar 

  91. Hosgood SA, van Heurn E, Nicholson ML. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int. 2015;28(6):657–64. https://doi.org/10.1111/tri.12319.

    Article  PubMed  Google Scholar 

  92. Yang B, Hosgood SA, Nicholson ML. Naked small interfering RNA of caspase-3 in preservation solution and autologous blood perfusate protects isolated ischemic porcine kidneys. Transplantation. 2011;91(5):501–7. https://doi.org/10.1097/TP.0b013e318207949f.

    Article  CAS  PubMed  Google Scholar 

  93. Brasile L, Stubenitsky BM, Booster MH, Arenada D, Haisch C, Kootstra G. Transfection and transgene expression in a human kidney during ex vivo warm perfusion. Transplant Proc. 2002;34(7):2624.

    Article  CAS  Google Scholar 

  94. Swearingen B, Ravindra K, Xu H, Wu S, Breidenbach WC, Ildstad ST. Science of composite tissue allotransplantation. Transplantation. 2008;86(5):627–35. https://doi.org/10.1097/TP.0b013e318184ca6a.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hausien O, Swanson EW, Abraham JA, Higgins JP, Lee WPA, Shores JT, et al. Surgical and logistical aspects of donor limb procurement in hand and upper extremity transplantation. Vasc Composite Allotransplant. 2014;1(1–2):31–41. https://doi.org/10.4161/23723505.2014.973799.

    Article  Google Scholar 

  96. Cohen JL, Salomon BL. Therapeutic potential of CD4+ CD25+ regulatory T cells in allogeneic transplantation. Cytotherapy. 2005;7(2):166–70. https://doi.org/10.1080/14653240510018145.

    Article  CAS  PubMed  Google Scholar 

  97. Xia G, He J, Zhang Z, Leventhal JR. Targeting acute allograft rejection by immunotherapy with ex vivo-expanded natural CD4+ CD25+ regulatory T cells. Transplantation. 2006;82(12):1749–55. https://doi.org/10.1097/01.tp.0000250731.44913.ee.

    Article  PubMed  Google Scholar 

  98. Pu LY, Wang XH, Zhang F, Li XC, Yao AH, Yu Y, et al. Adoptive transfusion of ex vivo donor alloantigen-stimulated CD4(+)CD25(+) regulatory T cells ameliorates rejection of DA-to-Lewis rat liver transplantation. Surgery. 2007;142(1):67–73. https://doi.org/10.1016/j.surg.2007.02.014.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Bassiri Gharb.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Machine Preservation of the Liver

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Figueroa, B., Orfahli, L.M. et al. Composite Vascularized Allograft Machine Preservation: State of the Art. Curr Transpl Rep 6, 265–276 (2019). https://doi.org/10.1007/s40472-019-00263-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-019-00263-0

Keywords

Navigation