Skip to main content

Advertisement

Log in

Methodologic Issues when Estimating Risks in Pharmacoepidemiology

  • Pharmacoepidemiology (T Stürmer, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Risk is an important parameter to describe the occurrence of health outcomes over time. However, many outcomes of interest in healthcare settings, such as disease incidence, treatment initiation, and cause-specific mortality, may be precluded from occurring by other events, often referred to as competing events. Here, we review straightforward approaches to estimate risk in the presence of competing events.

Recent Findings

We illustrate the application of these methods using timely examples in pharmacoepidemiologic research and compare results to those obtained using analytic simplifications commonly used to handle competing events.

Summary

These examples demonstrate how the analytic methods used to account for competing events affect the interpretation of results from pharmacoepidemiologic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Recently Published Papers of Particular Interest Have Been Highlighted as: • Of importance•• Of major importance

  1. Cole SR, Hudgens MG, Brookhart MA, Westreich D. Risk. Am J Epidemiol. 2015;181(4):246–50. Defines risk as a foundational parameter for epidemiologists.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Verduijn M, Grootendorst DC, Dekker FW, Jager KJ, le Cessie S. The analysis of competing events like cause-specific mortality—beware of the Kaplan-Meier method. Nephrol Dial Transplant. 2011;26(1):56–61.

    Article  PubMed  Google Scholar 

  3. Noordzij M, Leffondré K, van Stralen KJ, Zoccali C, Dekker FW, Jager KJ. When do we need competing risks methods for survival analysis in nephrology? Nephrol Dial Transplant. 2013;28(11):2670–7.

    Article  PubMed  Google Scholar 

  4. Wolbers M, Koller MT, Stel VS, Schaer B, Jager KJ, McMurray J, et al. Competing risks analyses: objectives and approaches. Eur Heart J. 2014;35(42):2936–41.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides KH. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther. 2013;33(1):8–15.

    Article  PubMed  Google Scholar 

  6. Dignam JJ, Zhang Q, Kocherginsky M, Gelman R, Gelber R, Beyersmann J, et al. The use and interpretation of competing risks regression models. Clin Cancer Res. 2012;18(8):2301–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jepsen P, Vilstrup H, Andersen PK. The clinical course of cirrhosis: the importance of multistate models and competing risks analysis. Hepatology. 2015;62(1):292–302.

    Article  PubMed  Google Scholar 

  8. Butler AM, Olshan AF, Kshirsagar AV, Edwards JK, Nielsen ME, Wheeler SB, Brookhart MA. Cancer incidence among US Medicare ESRD patients receiving hemodialysis, 1996-2009. Am J Kidney Dis. 2015;65(5):763–72.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lesko, CR, Edwards, JK, Moore, RD, Lau, B. A longitudinal HIV care continuum: 10-year restricted mean time in each care continuum stage after enrollment in care, by history of injection drug use. Aids. 2016;In press.

  10. Koller MT, Raatz H, Steyerberg EW, Wolbers M. Competing risks and the clinical community: irrelevance or ignorance? Stat Med. 2012;31(11–12):1089–97.

    Article  PubMed  Google Scholar 

  11. Farewell AVT, Cox DR. A note on multiple time scales in life testing. J R Stat Soc Ser C. 1979;28(1):73–5.

    Google Scholar 

  12. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–81.

    Article  Google Scholar 

  13. Gray RJA. Class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16(3):1141–54.

    Article  Google Scholar 

  14. Kalbfleisch, JD, Prentice, RL. The statistical analysis of failure time data. J. Wiley; 2002 439 p.

  15. Aalen OO, Johansen S. An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand J Stat. 1978;5(3):141–50.

    Google Scholar 

  16. Prentice RL, Kalbfleisch JD. Peterson a V, Flournoy N, farewell VT, Breslow NE. The analysis of failure times in the presence of competing risks. Biometrics. 1978;34(4):541–54.

    Article  CAS  PubMed  Google Scholar 

  17. Greenland S. Causality theory for policy uses of epidemiological measures. In: Summary measures of population health: Concepts, ethics, and applications. 2002:291–302.

  18. Rothman, KJ, Greenland, S, Lash, TL. Modern Epidemiology. Lippincott Williams & Wilkins; 2008.

  19. Klein, JP, Moeschberger, ML. Survival Analysis: Techniques for Censored and Truncated Data. Springer; 2nd edition; 2005.

  20. Kramer MS, Zhang X, Platt RW. Analyzing risks of adverse pregnancy outcomes. Am J Epidemiol. 2014;179(3):361–7.

    Article  PubMed  Google Scholar 

  21. Hernán MA, Schisterman EF, Hernández-Díaz S. Invited commentary: composite outcomes as an attempt to escape from selection bias and related paradoxes. Am J Epidemiol. 2014;179(3):368–70.

    Article  PubMed  Google Scholar 

  22. Kramer MS, Zhang X, Platt RW. Kramer et al. respond to “composite outcomes and paradoxes. Am J Epidemiol. 2014;179(3):371–2.

    Article  PubMed  Google Scholar 

  23. Hernán MA, Schisterman EF, Hernández-Díaz S. Invited commentary: composite outcomes as an attempt to escape from selection bias and related paradoxes. Am J Epidemiol. 2014;179(3):368–70.

    Article  PubMed  Google Scholar 

  24. Westreich D, Edwards JK, Rogawski ET, Hudgens MG, Stuart EA, Cole SR. Causal impact: epidemiological approaches for a public health of consequence. Am J Public Health. 2016;106(6):1011–2.

    Article  PubMed  Google Scholar 

  25. Hernán MA, Hernández-Díaz S, Robins JMA. Structural approach to selection bias. Epidemiology. 2004;15(5):615–25.

    Article  PubMed  Google Scholar 

  26. Howe CJ, Cole SR, Lau B, Napravnik S, Eron JJ. Selection bias due to loss to follow up in cohort studies. Epidemiology. 2016;27(1):91–7. Describes considerations when estimating absolute risks in the presence of selection bias.

    Article  PubMed  Google Scholar 

  27. Stuart EA, Cole SR, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the generalizability of results from randomized trials. J R Stat Soc Ser A Stat Soc. 2011;174(2):369–86.

    Article  Google Scholar 

  28. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J-C, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–9.

    Article  PubMed  Google Scholar 

  29. Howlader N, Ries LAG, Mariotto AB, Reichman ME, Ruhl J, Cronin KA. Improved estimates of cancer-specific survival rates from population-based data. J Natl Cancer Inst. 2010;102(20):1584–98.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Efron, B, Tibshirani, R. An introduction to the bootstrap. Chapman & Hall; 1993.

  31. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med. 2007;26(11):2389–430.

    Article  CAS  PubMed  Google Scholar 

  32. Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available: table 1. Am J Epidemiol. 2016;183(8):758–64.

    Article  PubMed  Google Scholar 

  33. Young JG, Cain LE, Robins JM, O’Reilly EJ, Hernán MA. Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula. Stat Biosci. 2011;3(1):119–43.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oakes JM. Effect identification in comparative effectiveness research. EGEMS (Washington, DC). 2013;1(1):1004.

    Google Scholar 

  35. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–60.

    Article  CAS  PubMed  Google Scholar 

  36. Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights. Comput Methods Prog Biomed. 2004;75(1):45–9.

    Article  Google Scholar 

  37. Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008;168(6):656–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Robins JA. New approach to causal inference in mortality studies with a sustained exposure period: application to control of the healthy worker survivor effect. Math Model. 1986;7(9–12):1393–512.

    Article  Google Scholar 

  39. Keil A, Edwards JK, Richardson DB, Naimi AI, Cole SR. The parametric g-formula for time-to-event data intuition and a worked example. Epidemiology. 2014;25(6):889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Edwards JK, McGrath LJ, Buckley JP, Schubauer-Berigan MK, Cole SR, Richardson DB. Occupational radon exposure and lung cancer mortality: estimating intervention effects using the parametric g-formula. Epidemiology. 2014;25(6):829–34.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stitelman OM, De Gruttola V, van der Laan MJA. General implementation of TMLE for longitudinal data applied to causal inference in survival analysis. Int J Biostat. 2012;8(1).

  42. Westreich D, Cole SR. Invited commentary: positivity in practice. Am J Epidemiol. 2010;171(6):674–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xie J, Liu C. Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat Med. 2005;24(20):3089–110.

    Article  PubMed  Google Scholar 

  44. Westreich D, Cole SR, Tien PC, Chmiel JS, Kingsley L, Funk MJ, Anastos K, Jacobson LP. Time scale and adjusted survival curves for marginal structural cox models. Am J Epidemiol. 2010;171(6):691–700.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cole SR, Lau B, Eron JJ, Brookhart MA, Kitahata MM, Martin JN, Mathews WC, Mugavero MJ. Estimation of the standardized risk difference and ratio in a competing risks framework: application to injection drug use and progression to AIDS after initiation of antiretroviral therapy. Am J Epidemiol. 2015;181(4):238–45. Applied example illustrating approaches to estimate counterfactual risk in an HIV cohort study.

    Article  PubMed  Google Scholar 

  46. Cain LE, Robins JM, Lanoy E, Logan R, Costagliola D, Hernán MA. When to start treatment? A systematic approach to the comparison of dynamic regimes using observational data. Int J Biostat. 2010;6(2):Article 18.

    Article  PubMed  Google Scholar 

  47. Lesko C, Lau B. Bias due to confounders for the exposure-competing risk relationship when estimating the cumulative incidence function or subdistribution relative hazard. Epidemiology. 2016; in press. Provides guidance on avoiding confounding bias in studies of endpoints with competing events.

  48. Robins JM, Rotnitzky A. Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewell M, Dietz K, Farewell V, editors. AIDS epidemiology - methodological issues. Boston, MA: Birkhäuser; 1992. p. 297–331.

    Chapter  Google Scholar 

  49. Gokhale, M. Comparative incidence of cardiovascular events in older adults initiating DPP-4 inhibitors versus other antidiabetic drugs. In: Spotlight Poster Presentation at the International Conference on Pharmacoepidemiology & Therapeutic Risk Management (ICPE). Dublin, Ireland: 2016

  50. Ray WA. Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol. 2003;158(9):915–20.

    Article  PubMed  Google Scholar 

  51. Lund JL, Richardson DB, Stürmer T. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Curr Epidemiol reports. 2015;2(4):221–8. Provides context for decisions regarding the origin and comparison group of interest, both of which are important when comparing risks.

    Article  Google Scholar 

  52. Brookhart MA. Counterpoint: the treatment decision design. Am J Epidemiol. 2015;182(10):840–5. Presents a generalization of the new user design, with important ramifications for the choice of origin in pharmacoepidemiology.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Robins JM, Finkelstein DM. Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics. 2000;56(3):779–88.

    Article  CAS  PubMed  Google Scholar 

  54. Toh S, Hernández-Díaz S, Logan R, Robins JM, Hernán MA. Estimating absolute risks in the presence of nonadherence: an application to a follow-up study with baseline randomization. Epidemiology. 2010;21(4):528–39.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Edwards JK, Cole SR, Westreich D, Crane H, Eron JJ, Mathews WC, Moore R, Boswell SL, Lesko CR, Mugavero MJ. Multiple imputation to account for measurement error in marginal structural models. Epidemiology. 2015;26(5):645–52.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cole SR, Jacobson LP, Tien PC, Kingsley L, Chmiel JS. Using marginal structural measurement-error models to estimate the long-term effect of antiretroviral therapy on incident aids or death. Am J Epidemiol. 2010;171(1):113–22.

    Article  PubMed  Google Scholar 

  57. Bakoyannis G, Yiannoutsos CT. Impact of and correction for outcome misclassification in cumulative incidence estimation. PLoS One. 2015;10(9):e0137454. Outlines methods to account for outcome misclassification when estimating risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cook TD, Kosorok MR. Analysis of time-to-event data with incomplete event adjudication. J Am Stat Assoc. 2004;99(468):1140–52.

    Article  Google Scholar 

  59. Vandenbroucke J, Pearce N. Point: incident exposures, prevalent exposures, and causal inference: does limiting studies to persons who are followed from first exposure onward damage epidemiology? Am J Epidemiol. 2015;182(10):826–33.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hernán MA. Counterpoint: epidemiology to guide decision-making: moving away from practice-free research. Am J Epidemiol. 2015;182(10):834–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vandenbroucke J, Pearce N. Vandenbroucke and Pearce respond to “incident and prevalent exposures and causal inference. Am J Epidemiol. 2015;182(10):846–7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hernán MA, Alonso A, Logan R, Grodstein F, Michels KB, Willett WC, Manson JE, Robins JM. Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology. 2008;19(6):766–79.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fine JP, Gray RA. Proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509.

    Article  Google Scholar 

  64. Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. Am J Epidemiol. 2009;170(2):244–56.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Andersen PK, Geskus RB. De witte T, Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol. 2012;41(3):861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Allignol A, Schumacher M, Wanner C, Drechsler C, Beyersmann J, Scheike T, et al. Understanding competing risks: a simulation point of view. BMC Med Res Methodol. 2011;11(86):1–13.

    Google Scholar 

  67. Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JPA. Competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. J Clin Epidemiol. 2013;66(6):648–53. Outlines considerations on reporting results from studies with competing events.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH U01 HL121812, U01 DA036935, R01 AI100654, and 5R25CA116339-07.

The project presented in example #1 was supported by the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health through Grant Award Number 1UL1TR001111. The database infrastructure for example #1 was funded by the CER Strategic Initiative of UNC’s Clinical Translational Science Award (1 ULI RR025747) and the UNC School of Medicine. The authors thank Dr. Jennifer Lund, the PI for this project, for use of the data. The authors also acknowledge the efforts of the National Cancer Institute’s Applied Research Program, the Centers for Medicare and Medicaid Services’ Office of Research, Development, and Information, the Information Management Services, Inc., and the Surveillance, Epidemiology, and End Results (SEER) Program tumor registries in the creation of the SEER-Medicare database.

The database infrastructure used for example #2 was funded by the Pharmacoepidemiology Gillings Innovation Lab (PEGIL) for the Population-Based Evaluation of Drug Benefits and Harms in Older US Adults (GIL200811.0010), the Center for Pharmacoepidemiology, Department of Epidemiology, UNC Gillings School of Global Public Health, the CER Strategic Initiative of UNC’s Clinical Translational Science Award (UL1TR001111), the Cecil G. Sheps Center for Health Services Research, UNC, and the UNC School of Medicine.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie K. Edwards.

Ethics declarations

Conflict of Interest

Mugdha Gokhale is an employee of GlaxoSmithKline.

Laure Hester, Catherine Lesko, and Jessie Edwards declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies referenced in this work by Edwards, Lesko, Gokhale, and Hester involving human subjects were performed after approval by the appropriate institutional review board. When required, written informed consent was obtained from all participants.

Additional information

This article is part of the Topical Collection on Pharmacoepidemiology

Appendices

Appendix 1: SAS code to estimate risks of cancer-related mortality in example #1

This SAS code assumes an input dataset with at least 2 variables: (1) a time variable t indicating the time from the origin to death or censoring and (2) an event indicator j with 3 levels (0 = censoring, 1 = cancer death, 2 = other death). This code assumes no tied event times. If ties are present, we recommend adding a very small amount of random noise to the event times so that all event times are unique. The output of this code is a dataset with estimates of cancer-related mortality risk and noncancer-related mortality risk for each event time.

figure a

Appendix 2: Subdistribution hazard ratios for example 1

Table 2 Cancer-related cause-specific and subdistribution hazard ratios associated with prevalent diabetes, congestive heart failure (CHF), or chronic obstructive pulmonary disease (COPD) at Non-Hodgkins Lymphoma (NHL) diagnosis, among N = 5192 patients over age 65 in the linked SEER-Medicare database diagnosed 2007–2009

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, J.K., Hester, L.L., Gokhale, M. et al. Methodologic Issues when Estimating Risks in Pharmacoepidemiology. Curr Epidemiol Rep 3, 285–296 (2016). https://doi.org/10.1007/s40471-016-0089-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-016-0089-1

Keywords

Navigation