Skip to main content
Log in

An optimum method for fractal–fractional optimal control and variational problems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, we design a new computational algorithm for solving fractal–fractional optimal control and variational problems. To attain the proposed goal, we exert Pell–Lucas polynomials and the Legendre–Gauss quadrature rule. Also, to improve the accuracy of the numerical scheme, we present a new method for calculating the operational matrix of FF-derivative. The proposed operational matrix is called pseudo-operational matrix which is in comparison with the usual operational matrix is more accurate. Furthermore, the experimental results including a comparison to another method are expressed in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North-Holland mathematics studies. Elsevier, New York

    Google Scholar 

  2. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  3. Al-Refai M, Jarrah AM (2019) Fundamental results on weighted Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 126:7–11. https://doi.org/10.1016/j.chaos.2019.05.035

    Article  MATH  Google Scholar 

  4. Atangana A, Baleanu D (2016) New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model. Int J Therm Sci 20:763–769. https://doi.org/10.2298/TSCI160111018A

    Article  Google Scholar 

  5. Atangana A (2017) Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102:396–406. https://doi.org/10.1016/j.chaos.2017.04.027

    Article  MATH  Google Scholar 

  6. Li ZF, Liu Z, Khan MA (2019) Fractional investigation of bank data with fractal-fractional Caputo derivative. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2019.109468

    Article  Google Scholar 

  7. Wang W, Khan MA (2019) Analysis and numerical simulation of fractional model of bank data with fractal–fractional Atangana–Baleanu derivative. J Comput Appl Math 369:112646. https://doi.org/10.1016/j.cam.2019.112646

    Article  MATH  Google Scholar 

  8. Atangana A, Khan MA (2020) Modeling and analysis of competition model of bank data with fractal–fractional Caputo–Fabrizio operator. Alex Eng J 59:1985–1998. https://doi.org/10.1016/j.aej.2019.12.032

    Article  Google Scholar 

  9. Atangana A, Qureshi S (2019) Modeling attractors of chaotic dynamical systems with fractal–fractional operators. Chaos Solitons Fractals 123:320–337. https://doi.org/10.1016/j.chaos.2019.04.020

    Article  MATH  Google Scholar 

  10. Srivastava HM, Saad KM (2020) Numerical simulation of the fractal–fractional Ebola virus. Fractal Fract 4(4):49. https://doi.org/10.3390/fractalfract4040049

    Article  Google Scholar 

  11. Hosseininia M, Heydari MH, Avazzadeh Z (2020) The numerical treatment of nonlinear fractal–fractional 2D Emden–Fowler equation utilizing 2D Chelyshkov polynomials. Fractals. https://doi.org/10.1142/S0218348X20400423

    Article  MATH  Google Scholar 

  12. Heydari MH, Atangana A, Avazzadeh Z (2020) Numerical solution of nonlinear fractal–fractional optimal control problems by Legendre polynomials. Math Methods Appl Sci. https://doi.org/10.1002/mma.6326

    Article  MATH  Google Scholar 

  13. Sweilam NH, Al-Mekhlafi SM, Almutairi A (2020) Fractal fractional optimal control for a novel malaria mathematical model: a numerical approach. Results Phys 19:103446. https://doi.org/10.1016/j.rinp.2020.103446

    Article  Google Scholar 

  14. Araz SI (2020) Numerical analysis of a new volterra integro-differential equation involving fractal–fractional operators. Chaos Solitons Fractals 130:109396. https://doi.org/10.1016/j.chaos.2019.109396

    Article  MATH  Google Scholar 

  15. Tang X, Liu Z, Wang X (2015) Integral fractional pseudospectral methods for solving fractional optimal control problems. Automatica 62:304–311. https://doi.org/10.1016/j.automatica.2015.09.007

    Article  MATH  Google Scholar 

  16. Dehestani H, Ordokhani Y, Razzaghi M (2020) Fractional-order Bessel wavelet functions for solving variable order fractional optimal control problems with estimation error. Int J Syst Sci 51(6):1032–1052. https://doi.org/10.1080/00207721.2020.1746980

    Article  MATH  Google Scholar 

  17. Zaky MA, Machado JAT (2017) On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul 52:177–189. https://doi.org/10.1016/j.cnsns.2017.04.026

    Article  MATH  Google Scholar 

  18. Dehestani H, Ordokhani Y, Razzaghi M (2020) Modified wavelet method for solving fractional variational problems. J Vib Control. https://doi.org/10.1177/1077546320932025

    Article  MATH  Google Scholar 

  19. Ezz-Eldien SS, Doha EH, Bhrawy AH, El-Kalaawy AA, Machado JAT (2018) A new operational approach for solving fractional variational problems depending on indefinite integrals. Commun Nonlinear Sci Numer Simul 57:246–263. https://doi.org/10.1016/j.cnsns.2017.08.026

    Article  MATH  Google Scholar 

  20. Salati AB, Shamsi M, Torres DFM (2019) Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun Nonlinear Sci Numer Simul 67:334–350. https://doi.org/10.1016/j.cnsns.2018.05.011

    Article  MATH  Google Scholar 

  21. Rabiei K, Ordokhani Y, Babolian E (2017) The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear Dyn 88(2):1013–1026. https://doi.org/10.1007/s11071-016-3291-2

    Article  MATH  Google Scholar 

  22. Dehestani H, Ordokhani Y (2020) A spectral framework for the solution of fractional optimal control and variational problems involving Mittag–Leffler nonsingular kernel. J Vib Control. https://doi.org/10.1177/1077546320974815

    Article  Google Scholar 

  23. Hosseinpour S, Nazemi A (2016) Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method. IMA J Math Control Inf 33(2):543–561. https://doi.org/10.1093/imamci/dnu058

    Article  MATH  Google Scholar 

  24. Kheiri H, Jafari M (2019) Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing. J Appl Math Comput 60:387–411. https://doi.org/10.1007/s12190-018-01219-w

    Article  MATH  Google Scholar 

  25. Kumar N, Mehra M (2020) Collocation method for solving nonlinear fractional optimal control problems by using Hermite scaling function with error estimates. Optim Control Appl Methods. https://doi.org/10.1002/oca.2681

    Article  MATH  Google Scholar 

  26. Das S, Das P, Das P (2020) Dynamics and control of multidrug-resistant bacterial infection in hospital with multiple delays. Commun Nonlinear Sci Numer Simul 89:105279

    Article  MATH  Google Scholar 

  27. Das P, Das S, Das P, Rihan FA, Uzuntarla M, Ghosh D (2021) Optimal control strategy for cancer remission using combinatorial therapy: a mathematical model-based approach. Chaos Solitons Fractals 145:110789

    Article  MATH  Google Scholar 

  28. Das P, Upadhyay RK, Das P, Ghosh D (2020) Exploring dynamical complexity in a time-delayed tumor-immune model. Chaos 30(12):123118

    Article  MATH  Google Scholar 

  29. Horadam AF, Mahon JM (1985) Pell and Pell–Lucas polynomials. Fibonacci Q 23(1):7–20

    MATH  Google Scholar 

  30. Bicknell M, Hoggatt VE (eds) (1973) A primer for the Fibonacci numbers. Fibonacci Association, San Jose

    MATH  Google Scholar 

  31. Yuzbasi S, Yildirim G (2020) Pell–Lucas collocation method for numerical solutions of two population models and residual correction. J Taibah Univ Sci 14(1):1262–1278. https://doi.org/10.1080/16583655.2020.1816027

    Article  Google Scholar 

  32. Koshy T (2014) Pell and Pell–Lucas numbers with applications. Springer, New York

    Book  MATH  Google Scholar 

  33. Dehestani H, Ordokhani Y, Razzaghi M (2020) A novel direct method based on the Lucas multiwavelet functions for variable-order fractional reaction–diffusion and subdiffusion equations. Numer Linear Algebra Appl. https://doi.org/10.1002/nla.2346

    Article  MATH  Google Scholar 

  34. Dehestani H, Ordokhani Y, Razzaghi M (2021) Combination of Lucas wavelets with Legendre–Gauss quadrature for fractional Fredholm–Volterra integro-differential equations. J Comput Appl Math 382:113070. https://doi.org/10.1016/j.cam.2020.113070

    Article  MATH  Google Scholar 

  35. Dehestani H, Ordokhani Y, Razzaghi M (2018) Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations. Appl Math Comput 336:433–453

    MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the anonymous referees for their valuable suggestions that improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Ordokhani.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehestani, H., Ordokhani, Y. An optimum method for fractal–fractional optimal control and variational problems. Int. J. Dynam. Control 11, 229–241 (2023). https://doi.org/10.1007/s40435-022-00978-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-00978-6

Keywords

Navigation