Skip to main content
Log in

Adaptive super-twisting terminal sliding mode control for nonlinear systems with multiple inputs

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents an adaptive super-twisting terminal sliding mode control for uncertain nonlinear systems with multiple inputs. Based on Lyapunov stability theory, the stability of overall uncertain nonlinear system is guaranteed. Under the proposed method, the trajectory of states not only converges to zero in finite time, but also the chattering phenomenon is alleviated without reducing the accuracy of the system performance. Unlike the previous super-twisting algorithm, the proposed method can be applied to higher order uncertain nonlinear systems with multiple inputs, which is more flexible in the application. Finally, the simulation results are given to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Draženović B (1969) The invariance conditions in variable structure systems. Automatica 5(3):287–295

    Article  MathSciNet  MATH  Google Scholar 

  2. Utkin VI (1977) Sliding mode systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MATH  Google Scholar 

  3. Yan J-J, Yang Y-S, Chiang T-Y, Chen C-Y (2007) Robust synchronization of unified chaotic systems via slidingmode control. Chaos Solitons Fractals 34:947–954

    Article  MathSciNet  MATH  Google Scholar 

  4. Xiang W, Chen F (2011) An adaptive sliding mode control scheme for a class of chaotic systems with mismatched perturbations and input nonlinearities. Commun Nonlinear Sci Numer Simul 16:1–9

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang L, Li T, Li Z, Li R (2013) Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems. Nonlinear Dyn 74:991–1002

    Article  MathSciNet  MATH  Google Scholar 

  6. Mobayen S (2014) Design of CNF-based nonlinear integral sliding surface for matched uncertain linear systems with multiple state-delays. Nonlinear Dyn 77(3):1047–1054

    Article  MATH  Google Scholar 

  7. Liu L, Pu J, Song X, Fu Z, Wang X (2014) Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity. Nonlinear Dyn 76:1857–1865

    Article  MathSciNet  MATH  Google Scholar 

  8. Mobayen S (2015) Design of LMI-based global sliding mode controller for uncertain nonlinear systems with application to Genesio’s chaotic system. Complexity 21(1):94–95

    Article  MathSciNet  Google Scholar 

  9. Tai TL (2006) Sliding mode control with perturbation compensation for a class of uncertain systems. Proc IMechE I J Syst Control Eng 220:585–593

    Article  Google Scholar 

  10. Huang CF, Lin JS, Liao TL, Yan JJ (2011) Quasi sliding mode control for chaotic symmetric gyros with linear-plus-cubic damping and input nonlinearity. J Vib Control 18(9):1330–1335

    Article  MathSciNet  Google Scholar 

  11. Mobayen S (2015) An adaptive chattering-free PID sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems. Nonlinear Dyn 82(1–2):53–60

    Article  MathSciNet  MATH  Google Scholar 

  12. Pai MC (2016) Chaos control of uncertain time-delay chaotic systems with input dead-zone nonlinearity. Complexity 21(3):13–20

    Article  MathSciNet  Google Scholar 

  13. Mobayen S, Baleanu D (2017) Linear matrix inequalities design approach for robust stabilization of uncertain nonlinear systems with perturbation based on optimally-tuned global sliding mode control. J Vib Control 23(8):1285–1295

    Article  MathSciNet  MATH  Google Scholar 

  14. Pai MC (2018) Adaptive observer-based global sliding mode control for uncertain discrete-time nonlinear systems with time-delays and input nonlinearity. Asian J Control. https://doi.org/10.1002/asjc.1828

    Article  Google Scholar 

  15. Li H, Liao X, Li C, Li C (2011) Chaos control an dsynchronization via a novel chatter free sliding mode control strategy. Neurocomputing 74:3212–3222

    Article  Google Scholar 

  16. Zhang X, Liu X, Zhu Q (2014) Adaptive chatter free sliding mode control for a class of uncertain chaotic systems. Appl Math Comput 232:431–435

    MathSciNet  MATH  Google Scholar 

  17. Mobayen S (2015) Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties. Complexity 21:239–244

    Article  MathSciNet  Google Scholar 

  18. Pai MC (2019) Synchronization of unified chaotic systems via adaptive nonsingular fast terminal sliding mode control. Int J Dyn Control 7(3):1101–1109

    Article  MathSciNet  Google Scholar 

  19. Shtessel YB, Moreno JA, Plestan F, Fridman LM, Poznyak AS (2010) Super-twisting adaptive sliding mode control: a Lyapunov design. In: 49th IEEE conference on decision and control, Atlanta, GA, USA

  20. Gonzalez T, Moreno JA, Fridman L (2012) Variable gain super-twisting sliding mode control. IEEE Trans Autom Control 57(8):2100–2105

    Article  MathSciNet  MATH  Google Scholar 

  21. Barth A, Reichhartinger M, Reger J, Horn M, Wulff K (2015) Lyapunov-design for a super-twisting sliding-mode controller using the certainty-equivalence principle. In: 1st IFAC conference on modelling, identification and control of nonlinear systems, Saint Petersburg, Russia

  22. Morfin OA, Castañeda CE, Valderrabano-Gonzalez A, Hernandez-Gonzalez M, Valenzuela FA (2017) A real-time SOSM super-twisting technique for a compound DC motor velocity controller. Energies 10(1286):1–18

    Google Scholar 

  23. Feng Z, Fei J (2018) Design and analysis of adaptive super-twisting sliding mode control for a microgyroscope. PLoS ONE 13(1):e0189457

    Article  Google Scholar 

  24. Goel A, Swarup A (2017) MIMO uncertain nonlinear system control via adaptive high-order super twisting sliding mode and its application to robotic manipulator. J Control Autom Electr Syst 28(1):36–49

    Article  Google Scholar 

  25. Mobayen S, Tchier F, Ragoub L (2017) Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control. Int J Syst Sci 48(9):1990–2002

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao Z, Gu H, Zhang J, Ding G (2017) Terminal sliding mode control based on super-twisting algorithm. J Syst Eng Electron 28(1):145–150

    Google Scholar 

  27. Haghighi DA, Mobayen S (2018) Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems. ISA Trans 75:216–225

    Article  Google Scholar 

  28. Feng Y, Zhou M, Zheng X, Yu X (2018) Full-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. J Frankl Inst 355:653–674

    Article  MathSciNet  MATH  Google Scholar 

  29. Li L (2011) Suppressing chaos of Duffing–Holmes system using random phase. Math Probl Eng 2011(538202):1–8

    MathSciNet  MATH  Google Scholar 

  30. Yang SK, Chen CL, Yau HT (2002) Control of chaos in Lorenz system. Chaos Solitons Fractals 13:767–780

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chang Pai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, MC. Adaptive super-twisting terminal sliding mode control for nonlinear systems with multiple inputs. Int. J. Dynam. Control 8, 666–674 (2020). https://doi.org/10.1007/s40435-019-00593-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-019-00593-y

Keywords