Skip to main content
Log in

Measure of chaos and adaptive synchronization of chaotic satellite systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, we analyze the chaotic behaviour of satellite system through the dissipative, equilibrium points, bifurcation diagrams, Poincare section maps, Lyapunov exponents and Kaplan–Yorke dimension. We observe the qualitative behaviour of satellite systems through these tools to justify the chaos in the system. We obtain the equilibrium points of chaotic satellite system. At each equilibrium point we yield the eigenvalue of Jacobian matrix of satellite system and verify the unstable regions. We calculate Kaplan–Yorke dimension, \(D_{KY}= 2.1905\). Adaptive synchronization for two identical satellite systems is presented. The qualitative and simulated results are provided for verification of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carroll TL, Pecora LM (1991) Synchronization chaotic circuits. IEEE Trans CAS I(38):435–446

    Google Scholar 

  2. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  MathSciNet  MATH  Google Scholar 

  3. Djaouida S (2014) Synchronization of a perturbed satellite attitude motion. Int J Mech Aerosp Ind Mechatron Manuf Eng 8(4):734–738

    Google Scholar 

  4. Guan P, Liu XJ, Liu JZ (2005) Flexible satellite attitude control via sliding mode technique. In: Proceedings of the 44th IEEE conference on decision and control, and the European control conference 2005 Seville, Spain, 12–15 Dec

  5. Smale S (1967) Differentiable dynamical systems. Bull Am Math Soc 73:747–817

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang YW, Guan ZH, Wen X (2004) Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos Solitons Fractals 19:899–903

    Article  MATH  Google Scholar 

  7. Khan A, Tyagi A (2016) Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design. Int J Dyn Control. https://doi.org/10.1007/s40435-016-0265-7

    Google Scholar 

  8. Khan A, Shikha (2016) Hybrid function projective synchronization of chaotic systems via adaptive control. Int J Dyn Control. https://doi.org/10.1007/s40435-016-0258-6

  9. Lin JS, Liao TL, Yan JJ, Yau HT (2005) Synchronization of unidirectional coupled chaotic systems with unknown channel time-delay: adaptive robust observer-based approach. Chaos Solitons Fractals 26(3):971–978

    Article  MathSciNet  MATH  Google Scholar 

  10. Duan GR, Yu HH (2013) LMI in control systems analysis, design and applications. CRC Press, Boca Raton

    Google Scholar 

  11. Khan A, Kumar S (2018) Study of chaos in satellite system. Pramana J Phys 90:13

    Article  Google Scholar 

  12. Khan A, Kumar S (2018) Measuring chaos and synchronization of chaotic satellite systems using sliding mode control. Optim Control Appl Methods. https://doi.org/10.1002/oca.2428

    MathSciNet  MATH  Google Scholar 

  13. Tsui APM, Jones AJ (2000) The control of higher dimensional chaos: comparative results for the chaotic satellite attitude control problem. Physica D 135:41–62

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuang J, Tan SH (2000) Chaotic attitude motion of satellites under small perturbation torques. J Sound Vib 235(2):175–200

    Article  Google Scholar 

  15. Kuang J, Tan S, Arichandran K, Leung AYT (2001) Chaotic dynamics of an asymmetrical gyrostat. Int J Non Linear Mech 36:1213–1233

    Article  MATH  Google Scholar 

  16. Kong LY, Zhoul FQ, Zou I (2006) The control of chaotic attitude motion of a perturbed spacecraft. In: Proceedings of the 25th Chinese control conference-2006 Harbin, Heilongjiang, 7–11 Aug

  17. Liu T, Zhao J (2003) Dynamics of spacecraft. Harbin Institute of Technology Press, Harbin (in Chinese)

    Google Scholar 

  18. Hamidzadeh SM, Esmaelzadeh R (2014) Control and synchronization chaotic satellite using active control. Int J Comput Appl 94(10):0975–8887

    Google Scholar 

  19. Saha LM, Das MK, Budhraja M (2006) Characterization of attractors in Gumowski-Mira map using fast Lyapunov indicator. FORMA 21:151–158

    MathSciNet  Google Scholar 

  20. Stephen Lynch (2007) Dynamical systems with applications using mathematical. Birkhuser, Berlin

    Google Scholar 

  21. Sidi MJ (1997) Spacecraft dynamics and control a practical engineering approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Zhang RW (1998) Satellite orbit and attitude dynamics and control. Beihang University Press, Beijing (in Chinese)

    Google Scholar 

  23. MacKunis W, Dupree K, Bhasin S, Dixon WE (2008) Adaptive neural network satellite attitude control in the presence of inertia and CMG actuator uncertainties. In: American control conference-2008 Westin Seattle Hotel, Seattle, Washington, 11–13 June

  24. Show LL, Juang JC, Jan YW (2003) An LMI-based nonlinear attitude control approach. IEEE Trans Control Syst Technol 11(1):73

    Article  Google Scholar 

  25. Park JH (2007) Adaptive modified projective synchronization of unified chaotic system with uncertain parameter. Chaos Soliton Fractals 34:1552–1559

    Article  MATH  Google Scholar 

  26. Fan Y, Wang W, Lin Y (2015) Synchronization of a class of chaotic systems based on adaptive control design of input-to-state stability. Int J Innov Computing Inf Control 11(3):803–814

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Kumar, S. Measure of chaos and adaptive synchronization of chaotic satellite systems. Int. J. Dynam. Control 7, 536–546 (2019). https://doi.org/10.1007/s40435-018-0481-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0481-4

Keywords

Navigation