Skip to main content
Log in

Flutter analysis including structural uncertainties using a relaxed LMI-based approach

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new approach to investigate the flutter phenomenon considering structural frequencies as uncertain parameters. An affine parameter state space model is used to describe the aeroelastic system and linear matrix inequalities (LMI) are employed to solve the stability analysis with a relaxation on the inequalities. Uncertainties are present during the design phases of an aircraft as well as when considering an operational set of similar aircraft. In the first case, uncertain aeroelastic models have great potential to reduce computational costs during the design phases, and, in the second one, to provide robust aeroelastic predictions under uncertain operational quantities of a set of aircraft. In this work, uncertain aeroelastic predictions for a three-degrees-of-freedom typical section obtained from the relaxed approach are compared to predictions considering the quadratic Lyapunov approach. In the first case, the structural modal frequency of a single degree-of-freedom is considered uncertain. In the second one, all degrees-of-freedom are uncertain. In all cases, the numerical results show that the relaxed approach proposed in this work is less conservative than the quadratic Lyapunov approach, providing a useful tool for flutter analysis including structural uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. FEM: Finite Element Method.

  2. a.c is the aerodynamic center, e.a the elastic axis, c.g center of gravity and s.m the section mid-chord.

References

  1. Bisplinghoff RL, Ashley H, Halfman RL (1996) Aeroelasticity. Dover Publications, New York

    MATH  Google Scholar 

  2. Fung YC (1993) An Introduction to the theory of aeroelasticity. Dover Publications, NY

    Google Scholar 

  3. Bueno DD, Góes LCS, Gonçalves PJP (2015) Flutter analysis including structural uncertainties. Meccanica 50(8):2093–2101. https://doi.org/10.1007/s11012-015-0138-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhatia KG (2003) Airplane aeroelasticity: practice and potential. J Aircr 40(6):1010–1018

    Article  Google Scholar 

  5. Wu S, Livne E (2017) Alternative aerodynamic uncertainty modeling approaches for flutter reliability analysis. AIAA J 55(8):55334. https://doi.org/10.2514/1.J055334

    Article  Google Scholar 

  6. Lind R, Brenner M (1997) Robust flutter margins of an f/a-18 aircraft from aeroelastic flight data. J Guid Control Dyn 20(3):597–604. https://doi.org/10.2514/2.4082

    Article  MATH  Google Scholar 

  7. Zhigang W, Chao Y (2008) A new approach for aeroelastic robust stability analysis. Chin J Aeronaut 21(5):417–422. https://doi.org/10.1016/S1000-9361(08)60054-0

    Article  Google Scholar 

  8. Dai Y, Yang C (2014) Methods and advances in the study of aeroelasticity with uncertainties. Chin J Aeronaut 27(3):461–474. https://doi.org/10.1016/j.cja.2014.04.016

    Article  Google Scholar 

  9. Süelözgen Ö (2021) Advanced aeroelastic robust stability analysis with structural uncertainties. CEAS Aeronaut J. https://doi.org/10.1007/s13272-020-00473-8

    Article  Google Scholar 

  10. Moulin B (2005) Modeling of aeroservoelastic systems with structural and aerodynamic variations. AIAA J 43(12):2503. https://doi.org/10.2514/1.15023

    Article  Google Scholar 

  11. Chung C, Shin S, Kim T (2008) A new robust aeroelastic analysis including aerodynamic uncertainty from varying mach numbers. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics, and materials conference . https://doi.org/10.2514/6.2008-2200. https://arc.aiaa.org/doi/abs/10.2514/6.2008-2200

  12. Gahinet P, Apkarian P, Chilali M (1996) Affine parameter-dependent lyapunov functions and real parametric uncertainty. IEEE Trans Autom Control 41(3):436–442. https://doi.org/10.1109/9.486646

    Article  MathSciNet  MATH  Google Scholar 

  13. Bueno DD, Marqui CR, Goes LCS, Gonçalvez PJP (2012) Aeroelastic stability analysis using linear matrix inequalities. J Braz Soc Mech Sci Eng 34:545–551

    Article  Google Scholar 

  14. Takarics B, Patartics B, Luspay T, Vanek B, Roessler C, Bartasevicius J, Koeberle SJ, Hornung M, Teubl D, Pusch M, Wustenhagen M, Kier TM, Looye G, Bauer P, Meddaikar YM, Waitman S, Marcos A (2020). Active flutter mitigation testing on the FLEXOP demonstrator aircraft https://doi.org/10.2514/6.2020-1970.https://arc.aiaa.org/doi/abs/10.2514/6.2020-1970

  15. Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter. Report 496, National advisory commitee for aeronautics - NACA

  16. Roger K (1977) Airplane math modeling methods for active control design. In: Structural aspects of active control

  17. Ribeiro FA, Dowell EH, Bueno DD (2021) Enhancement to least square-based approach for time-domain unsteady aerodynamic approximation. J Aircr 58(1):111–124. https://doi.org/10.2514/1.C035824

    Article  Google Scholar 

  18. Guerra T, Bernal M (2009) A way to escape from the quadratic framework. In: 2009 IEEE international conference on fuzzy systems, pp. 784–789 . https://doi.org/10.1109/FUZZY.2009.5277291

  19. Bueno DD, Sandoval Góes LC, Gonçalves PJP (2014) Control of limit cycle oscillation in a three degrees of freedom airfoil section using fuzzy takagi-sugeno modeling. Shock and vibration. https://doi.org/10.1155/2014/597827

  20. Barmish BR (1985) Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. J Optim Theory Appl 4:399–408

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramos DCW, Peres PLD (2001) A less conservative LMI condition for the robust stability of discrete-time uncertain systems. Syst Control Lett 43(5):371–378. https://doi.org/10.1016/S0167-6911(01)00120-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Mozelli LA, Palhares RM, Avellar GSC (2009) A systematic approach to improve multiple lyapunov function stability and stabilization conditions for fuzzy systems. Inform Sci 179(8):1149–1162. https://doi.org/10.1016/j.ins.2008.12.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first and third authors are thankful for the financial support provided from São Paulo Research Foundation (FAPESP), Grant number 2019/24729-6 and from Coordination for the Improvement of Higher Education Personnel (CAPES) Finance Code 001. They thank Dr. Flávio Andrade Faria for his suggestions and valuable discussion. The third author thanks to the National Council for Scientific and Technological Development (CNPq), Grant number 314151/2021-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico A. Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Technical Editor: André Cavalieri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A state space matrices

This appendix presents the submatrices shown in Eq. (6). They are given by

$$\begin{aligned} \bar{\textbf{A}}_1= & {} \begin{bmatrix} q\textbf{Q}_{\phi 3}&\cdots&q\textbf{Q}_{\phi 2+n_{lag}} \end{bmatrix} \end{aligned}$$
(A1)
$$\begin{aligned} \bar{\textbf{A}}_2= & {} \begin{bmatrix} \textbf{I}&\cdots&\textbf{I}&\cdots&\textbf{I} \end{bmatrix}^T \end{aligned}$$
(A2)

which is \((n_{lag}+1)m \times m\) dimensional, where \(\textbf{I}\) is \(m \times m\) identity matrix. Also,

$$\begin{aligned} \bar{\textbf{A}}_3 = \left[ \textbf{0}^{} \right] ^{(n_{lag}+1) \times 1} \end{aligned}$$
(A3)

where \(\textbf{0}\) is a \(m \times m\) matrix of zeros, and

$$\begin{aligned} \bar{\textbf{A}}_4 = - \left( \frac{V}{b} \right) \begin{bmatrix} \textbf{0} &{} \cdots &{} \textbf{0} \\ \gamma _1 \textbf{I} &{} \cdots &{} \textbf{0} \\ \textbf{0} &{} \ddots &{} \cdots \\ \textbf{0} &{} \textbf{0} &{} \gamma _{n_{lag}} \textbf{I} \end{bmatrix} \end{aligned}$$
(A4)

Matrix \(\textbf{E}\) is given by

$$\begin{aligned} \textbf{E} = \begin{bmatrix} \textbf{M}_{a \phi } &{} \tilde{\textbf{0}}^T \\ \tilde{\textbf{0}} &{} \tilde{\textbf{I}} \end{bmatrix} \end{aligned}$$
(A5)

where \(\tilde{\textbf{0}}\) is a \([ (n_{lag}+1)m \times m]\) matrix of zeros, \(\tilde{\textbf{I}}\) is an identity matrix with dimension \(m(n_{lag}+1)\), and \(\textbf{M}_{a \phi }\) and \(\textbf{B}_{a \phi }\) are given by

$$\begin{aligned} \textbf{M}_{a \phi }&= \textbf{M}_{\phi } - q \frac{b^2}{V^2} \textbf{Q}_{\phi 2} \end{aligned}$$
(A6)
$$\begin{aligned} \textbf{B}_{a \phi }&= \textbf{B}_{\phi } - q \frac{b}{V} \textbf{Q}_{\phi 1} \end{aligned}$$
(A7)

Appendix B proof of LMI relaxation

This proof is adapted from [22] to consider that the uncertain aeroelastic system is described by an affine parameter model. Let \(V_L\) the Lyapunov function, considering the uncertain parameters \(\alpha _j\) (\(j=1,...,m\)) time invariant, \(\dot{p}_i=0\) \(\forall \; i=1,...,2^m\). Then, \(\dot{V}_L\) is given by \(\dot{V}_L = 2 \sum _{i = 1}^{2^m} p_i \dot{\textbf{x}}^T \textbf{P}_i \textbf{x}\) or, alternatively, \(2 \sum _{i = 1}^{2^m} p_i \textbf{x}^T \textbf{P}_i \dot{\textbf{x}}\) because \(\textbf{P}_i\) is symmetric.

Consider \(0 = 2\left( \textbf{x}^T\textbf{M}_1+\dot{\textbf{x}}^T\textbf{M}_2\right) \left[ \dot{\textbf{x}} - \textbf{E}^{-1}\left( \textbf{A}_{e0} + \sum _{i=1}^{2^m} p_i \textbf{A}_{ev_i} \right) \textbf{x} \right]\), if \(\textbf{A}_{e0}\) is null matrix, this equation corresponds to the proposal of [22], i.e., a polytopic model-based approach to obtain the relaxed LMI. However, considering the new affine parameter model (Eq. 13), the time derivative of \(V_L\) is given by \(\dot{V}_L = 2 \sum _{i=1}^{2^m}p_i \textbf{ x}^T \textbf{P}_i \dot{\textbf{ x}}\). Then, the following equation can be written

$$\begin{aligned}{} & {} \dot{V}_L = 2 \sum _{i=1}^{2^m}p_i \textbf{ x}^T \textbf{P}_i \dot{\textbf{ x}} + 2\left( \textbf{x}^T\textbf{M}_1+\dot{\textbf{x}}^T\textbf{M}_2\right) \nonumber \\{} & {} \quad \left[ \dot{\textbf{x}} - \textbf{E}^{-1}\left( \textbf{A}_{e0} + \sum _{i=1}^{2^m} p_i \textbf{A}_{ev_i} \right) \textbf{x} \right] \end{aligned}$$
(B8)

Note that it is added zero to \(\dot{V}_L\). The following equivalences are employed

$$\begin{aligned}{} & {} 2 \sum _{i = 1}^{2^m} p_i \dot{\textbf{x}}^T \textbf{P}_i \textbf{x}= \sum _{i = 1}^{2^m} p_i \left( \dot{\textbf{x}}^T \textbf{P}_i \textbf{x} + \textbf{x}^T \textbf{P}_i \dot{\textbf{x}} \right) \nonumber \\{} & {} \quad 2 \textbf{x}^T \textbf{M}_1 \dot{\textbf{x}} = \sum _{i = 1}^{2^m} p_i \left( \textbf{x}^T \textbf{M}_1 \dot{\textbf{x}} + \dot{\textbf{x}}^T \textbf{M}_1^T \textbf{x} \right) \nonumber \\{} & {} \quad 2 \dot{\textbf{x}}^T \textbf{M}_2 \dot{\textbf{x}} = \sum _{i = 1}^{2^m} p_i \left( \dot{\textbf{x}}^T \textbf{M}_2 \dot{\textbf{x}} + \dot{\textbf{x}}^T \textbf{M}_2^T \dot{\textbf{x}} \right) \nonumber \\{} & {} \quad 2\dot{\textbf{ x}}^T \textbf{M}_2 \sum _{i=1}^{2^m}p_i \left( \textbf{E}^{-1}\textbf{A}_{ev_i}\right) \textbf{ x} = \nonumber \\{} & {} \quad \;\;\; \sum _{i=1}^{2^m}p_i \left[ \dot{\textbf{ x}}^T \textbf{M}_2 \left( \textbf{E}^{-1}\textbf{A}_{ev_i}\right) \textbf{ x} + \textbf{ x}^T \left( \textbf{E}^{-1}\textbf{A}_{ev_i}\right) ^T \textbf{M}_2^T \dot{\textbf{ x}} \right] \nonumber \\{} & {} \quad 2 \textbf{ x}^T \textbf{M}_1 \left( \textbf{E}^{-1}\textbf{A}_{e0}\right) \textbf{ x} = \nonumber \\{} & {} \quad \;\;\; \sum _{i = 1}^{2^m} p_i \left[ \textbf{x}^T \textbf{M}_1 \left( \textbf{E}^{-1}\textbf{A}_{e0}\right) \textbf{x} + \textbf{x}^T \left( \textbf{E}^{-1}\textbf{A}_{e0}\right) ^T\textbf{M}_1^T \textbf{x} \right] \nonumber \\{} & {} \quad 2 \dot{\textbf{ x}}^T \textbf{M}_2 \left( \textbf{E}^{-1}\textbf{A}_{e0}\right) \textbf{ x} = \nonumber \\{} & {} \quad \;\;\; \sum _{i = 1}^{2^m} p_i \left[ \dot{\textbf{ x}}^T \textbf{M}_2 \left( \textbf{E}^{-1}\textbf{A}_{e0}\right) \textbf{ x} + \textbf{ x}^T \left( \textbf{E}^{-1}\textbf{A}_{e0}\right) ^T\textbf{M}_2^T \dot{\textbf{ x}} \right] \end{aligned}$$
(B9)

Rearranging this equation and defining \(\textbf{z} = \{\textbf{x}^T \;\; \dot{\textbf{x}}^T \}^T\) it is possible to write \(\dot{V}_L = \sum _{i=1}^{2^m} \textbf{z}^T \left( \textbf{Z}_i + \textbf{Z}_{\textbf{A}_0}\right) \textbf{z}\), and demonstrate that \(\textbf{Z}_i\) is given by Eq. (18) and (19). The relaxed stability is verified if \(\dot{V}_L<0\), which is achieved for any \(\textbf{z}\) if, and only if, \(\textbf{Z}_i \prec - \textbf{Z}_{\textbf{A}_0}\) and \(\textbf{P}_i \succ 0\), \(i=1,...,2^m\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, F.A., De Marqui Júnior, C. & Bueno, D.D. Flutter analysis including structural uncertainties using a relaxed LMI-based approach. J Braz. Soc. Mech. Sci. Eng. 45, 199 (2023). https://doi.org/10.1007/s40430-023-04091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04091-3

Keywords

Navigation