Skip to main content
Log in

Tool rotational speed impact on temperature variations, mechanical properties and microstructure of friction stir welding of dissimilar high-strength aluminium alloys

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Temperature variations during friction stir welding result from the heat generated by the frictional action of a rotating tool on the workpiece. This temperature distribution affects the mechanical behaviour and ultimately the quality of welds produced. The study of the correlations between process parameter, temperature, mechanical properties and microstructure has become imperative in order to promote welds devoid of defects and possessing sound mechanical properties and to establish a temperature feedback control for effective components designs for industrial applications. This work studied the impact of tool rotational speed on temperature profile, mechanical behaviour and microstructure of friction stir welding of dissimilar aluminium alloy 6101-T6 and 7075-T651. Processing parameters of three different rotational speeds with values 1250 rpm, 1550 rpm and 1850 rpm and a constant travel speed of 50 mm/min were employed. The temperature profile was measured with one end of thermocouple wires embedded in the plates and the other end connected to a data capturing software device. The temperature profile indicates that the temperature rises with time and is higher at the retreating sides than at the advancing side of the weld. The tensile test results show that the ultimate tensile strength decreases as the temperature increases. Microstructural observations of weld zone revealed non-uniformity in material flow. However, more material penetration into each other occurred more at 1550 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Sidhu MS, Chatha SS (2012) Friction stir welding—process and its variables: a review. Int J Emerg Eng Technol Adv Eng 2(12):275

    Google Scholar 

  2. Bagheri Hariri M, Gholami Shiri S, Yaghoubinezhad Y, Mohammadi Rahvard M (2013) The optimum combination of tool rotation rate and travelling speed for obtaining the preferable corrosion behaviour and mechanical properties of friction stir welded AA5052 aluminium alloy. Mater Des 50:620–634

    Article  Google Scholar 

  3. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  4. Padhy GK, Wu CS, Gao S (2018) Friction stir based welding and processing technologies—processes, parameters, microstructures and applications: a review. J Mater Sci Technol 34:1–38

    Article  Google Scholar 

  5. Abolusoro PO, Akinlabi ET (2019) Wear and corrosion behaviour of friction stir welded aluminium alloys—an overview. Int J Mech Prod Eng Res Dev 9:967–982

    Google Scholar 

  6. Silva ACF, De Backer J, Bolmsjö G (2017) Temperature measurements during friction stir welding. Int J Adv Manuf Technol 88:2899–2908

    Article  Google Scholar 

  7. Khandkar MZH, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8:165–174

    Article  Google Scholar 

  8. Tang J, Shen Y (2016) Numerical simulation and experimental investigation of friction stir lap welding between aluminium alloys AA2024 and AA7075. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.01.138

    Article  Google Scholar 

  9. Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Effects of tool–workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding. Int J Adv Manuf Technol 71:165–179

    Article  Google Scholar 

  10. Bie J, Liu Y-L, Zhang Z (2008) Effect of processing parameters on temperature distributions in friction stir welding. Suxing Gongcheng Xuebao J Plast Eng 15(3):212–217

    Google Scholar 

  11. Hassan KAA, Prangnell PB, Norman AF, Prince DA, Williams SW (2003) Effect of welding parameters on nugget zone microstructure and properties in high strength aluminium alloy friction stir welds. Sci Technol Weld Join. https://doi.org/10.1179/136217103225005480

    Article  Google Scholar 

  12. Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC (1997) Effects of friction stir welding on microstructure of 7075 aluminium. Scr Mater. https://doi.org/10.1016/S1359-6462(96)00344-2

    Article  Google Scholar 

  13. Bisadi H, Tavakoli A, Tour Sangsaraki M, Tour Sangsaraki K (2013) The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Mater Des. https://doi.org/10.1016/j.matdes.2012.06.029

    Article  Google Scholar 

  14. Sato YS, Kokawa H, Enomoto M, Jogan S (1999) Microstructural evolution of 6063 aluminium during friction-stir welding. Metall Mater Trans A Phys Metall Mater Sci. https://doi.org/10.1007/s11661-999-0251-1

    Article  Google Scholar 

  15. Rodrigues DM, Loureiro A, Leitao C, Leal RM, Chaparro BM, Vilaça P (2009) Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater Des. https://doi.org/10.1016/j.matdes.2008.09.016

    Article  Google Scholar 

  16. Abolusoro PO, Akinlabi ET (2020) In-process cooling in friction stir welding of aluminium alloys—an overview. In: Awang M et al (eds) Advances in material sciences and engineering. Lecture notes in mechanical engineering. Springer, Singapore, pp 435–444. https://doi.org/10.1007/978-981-13-8297-0_45

    Chapter  Google Scholar 

  17. Jata KV, Sankaran KK, Ruschau JJ (2000) Friction-stir welding effects on microstructure and fatigue of aluminium alloy 7050-T7451. Metall Mater Trans A Phys Metall Mater Sci. https://doi.org/10.1007/s11661-000-0136-9

    Article  Google Scholar 

  18. Mahoney MW, Rhodes CG, Flintoff JG, Spurling RA, Bingel WH (1998) Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A 29(7):1955–1964

    Article  Google Scholar 

  19. Lotfi AH, Nourouzi S (2014) Effect of welding parameters on microstructure, thermal, and mechanical properties of friction stir welded joints of Aa7075-T6 aluminium alloy. Metall Mater Trans A Phys Metall Mater Sci. https://doi.org/10.1007/s11661-014-2235-z

    Article  Google Scholar 

  20. Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J (2014) Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater Des. https://doi.org/10.1016/j.matdes.2013.10.082

    Article  Google Scholar 

  21. Aydin H, Bayram A, Esme U, Kazancoglu Y, Guven O (2010) Application of grey relation analysis (Gra) and Taguchi method for the parametric optimization of friction stir welding (FSW) process. Appl Grey Relat 44:205–211

    Google Scholar 

  22. Rajakumar S, Balasubramanian V (2012) Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Mater Des 40:17–35

    Article  Google Scholar 

  23. Lombard H, Hattingh DG, Steuwer A, James MN (2008) Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy. Eng Fract Mech 75:341–354

    Article  Google Scholar 

  24. Prabha KA, Putha PK, Prasad BS (2018) Effect of tool rotational speed on mechanical properties of aluminium alloy 5083 weldments in friction stir welding. Mater Today Proc 5(24):18535–18543

    Article  Google Scholar 

  25. Kalemba-Rec I, Kopyściański M, Miara D, Krasnowski K (2018) Effect of process parameters on mechanical properties of friction stir welded dissimilar 7075-T651 and 5083-H111 aluminium alloys. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2147-y

    Article  Google Scholar 

  26. Han MS, Lee SJ, Park JC, Ko SC, Woo Y Bin, Kim SJ (2009) Optimum condition by mechanical characteristic evaluation in friction stir welding for 5083-O Al alloy. Trans Nonferrous Met Soc China (Engl Ed). https://doi.org/10.1016/S1003-6326(10)60238-5

    Article  Google Scholar 

  27. Das U, Toppo V (2018) Effect of tool rotational speed on temperature and impact strength of friction stir welded joint of two dissimilar aluminum alloys. Mater Today Proc 5:6170–6175

    Article  Google Scholar 

  28. Kalevala PR, Akram J, Misra M, Ramachandran D, Gabbita JR (2016) Low-temperature friction stir welding of P91 steel. Def Technol 12:285–289

    Article  Google Scholar 

  29. Silva-magalhães A, Backer J De, Martin J, Bolmsjö G (2019) In-situ temperature measurement in friction stir welding of thick section aluminium alloys. J Manuf Process Elsevier 39:12–17

    Article  Google Scholar 

  30. Schmale J, Fehrenbacher A, Shrivastava A, Pfefferkorn FE (2016) Calibration of dynamic tool–workpiece interface temperature measurement during friction stir welding. Meas J Int Meas Confed 88:331–342

    Article  Google Scholar 

  31. Feng Z, Hubbard CR, David SA, Brown DW, An K, Clausen B et al (2007) In situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminium alloy. Sci Technol Weld Join 12:298–303

    Article  Google Scholar 

  32. Hamilton C, Dymek S, Sommers A (2010) Characteristic temperature curves for aluminum alloys during friction stir welding. Weld J 89:189s–194s. https://doi.org/10.1016/j.ijmachtools.2008.02.001

    Article  Google Scholar 

  33. Buffa G, Donati L, Fratini L, Tomesani L (2006) Solid-state bonding in extrusion and FSW: process mechanics and analogies. J Mater Process Technol 177:344–347

    Article  Google Scholar 

  34. Covington JL, Robison W, Webb B (2005) Experimental characterization of tool heating during friction stir welding. ASM Proceedings of the International Conference: Trends in Welding Research, pp 179–184

  35. Takayama Y, Akutsu Y, Choshiro N, Kato H, Watanabe H (2010) Temperature measurement during friction stir welding of dissimilar aluminum alloys, pp 1829–1834

  36. Miles M, Karki U, Hovanski Y (2014) Temperature and material flow prediction in friction-stir spot welding of advanced high-strength steel. JOM 66:2130–2136

    Article  Google Scholar 

  37. Upadhyay P, Reynolds AP (2010) Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets. Mater Sci Eng A 527:1537–1543

    Article  Google Scholar 

  38. Fehrenbacher A, Smith CB, Duffie NA, Pfefferkorn FE, Ferrier NJ, Zinn MR (2013) Combined temperature and force control for robotic friction stir welding. J Manuf Sci Eng 136:021007. https://doi.org/10.1115/1.4025912

    Article  Google Scholar 

  39. Swaminathan G, Sathiyamurthy S (2018) Experimental study of mechanical and metallurgical properties of friction stir welded dissimilar aluminium alloys. Int J Mech Prod Eng Res Dev 8(1):1049–1058

    Google Scholar 

  40. Palanivel R, Koshy Mathews P, Murugan N, Dinaharan I (2012) Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminium alloys. Mater Des 40:7–16

    Article  Google Scholar 

  41. Shigematsu I, Kwon YJ, Suzuki K, Imai T, Saito N (2003) Joining of 5083 and 6061 aluminium alloys by friction stir welding. J Mater Sci Lett. https://doi.org/10.1023/A:1022688908885

    Article  Google Scholar 

  42. Ouyang JH, Kovacevic R (2002) Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminium alloys. J Mater Eng Perform 11:51–63

    Article  Google Scholar 

  43. Abolusoro PO, Akinlabi ET (2019) Experimental investigations of tool pin geometry and process parameter influence on mechanical property of friction stir welded 6101-T6 and 7075-T651 aluminium alloys. In: International conference on engineering for sustainable world, 2019, p 1378

  44. Abolusoro PO, Akinlabi ET (2020) Effects of processing parameters on mechanical, material flow and wear behaviour of friction stir welded 6101-T6 and 7075-T651 aluminium alloys. Manuf Rev 7:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olatunji P. Abolusoro.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolusoro, O.P., Akinlabi, E.T. & Kailas, S.V. Tool rotational speed impact on temperature variations, mechanical properties and microstructure of friction stir welding of dissimilar high-strength aluminium alloys. J Braz. Soc. Mech. Sci. Eng. 42, 176 (2020). https://doi.org/10.1007/s40430-020-2259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-2259-9

Keywords

Navigation