Skip to main content
Log in

Continuous sliding control applied to subsea oil and gas separation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Due to the complexity and cost of maintenance in subsea environment, subsea equipments should be designed to be extremely robust. Thus, the robustness of sliding control is used to project a controller of liquid level inside subsea gas–liquid separator system. Subsea separation presents challenges related to nonlinearities of the dynamical system and disturbances on pipelines flow both changing their patterns along the years of operation. The present article proposes a controller capable of treating uncertainties regarding nonlinear effects based on distributed parameters. The controller deal with these uncertainties considering their bounded boundaries. Usual problems linked to the discontinuous control function generated by the sliding strategy are mitigated with a softened stabilization condition. Instead of determining the convergence of the liquid level to a specific point, the sliding control is used to stabilize the liquid level into a recommended operation zone. Inside of this zone, a sigmoid function is used to ensure the continuity and differentiability of control signal. Numerical simulations use characteristics method to represent the pipeline dynamics. Finally, it is presented a case of a trajectory tracking during a severe slug to show control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: [28]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baker AC, Lucas-Clementes D (1990) Application of subsea separation and pumping to marginal and deepwater field developments. Society of Petroleum Engineers, SPE 20698. https://doi.org/10.2118/20698-MS

  2. Bartolini G, Levant A, Pisano A, Usai E (1999) 2-sliding mode with adaptation. In: Proceedings of the seventh IEEE mediterranean conference on control and systems, pp 2421–2429

  3. Bejarano F, Pisano A, Usai E (2011) Finite-time converging jump observer for linear switched systems with unknown inputs. Nonlinear Anal Hybrid Syst 5(2):174–188

    Article  MathSciNet  Google Scholar 

  4. Boiko I, Fridman L, Pisano A, Usai E (2007) Analysis of chattering in systems with second order sliding modes. IEEE Trans Autom Control 52(11):2085–2102

    Article  MathSciNet  Google Scholar 

  5. Davila A, Moreno J, Fridman L (2009) Optimal Lyapunov function selection for reaching time estimation of super twisting algorithm. In: 48th conference on decision and control. Shangai, China

  6. de Paula LH, Storti FC, Fortaleza E Sliding control applied to subsea oil and gas separation system under fluid transient effects. International Federation of Applied Control—IFAC-PapersOnLine pp 33–38

  7. Edwards C, Spurgeon S, Hebden R (2002) On development and applications of sliding mode observers. In: Xu J, Xu Y (eds) Variable structure systems: towards XXIST century. LNCIS. Springer, Berlin, pp 253–282

    Chapter  Google Scholar 

  8. Edwards C, Spurgeon SK (1998) Sliding mode control: theory and applications. Series in systems and control. CRC Press, Boca Raton

    Book  Google Scholar 

  9. El-kholy EE (2005) High performace induction motor drive based on adaptative variable structure control. J Electr Eng 56:64–70

    Google Scholar 

  10. Estrada A, Fridman L (2008) Exact compensation of unmatched perturbations via hosm. In: Proceedings of the 47th IEEE conference on decision and control. Cancun, Mexico, pp 278–282

  11. Fortaleza E (2011) Active control of a reduced scale raiser undergoing vortex-induced vibrations. Math Comput Model Dyn Syst 135(1):011802-1–011802-5

    MathSciNet  Google Scholar 

  12. Fortaleza E, Creff Y, Lévine J (2011) Active control of a dynamically positioned vessel for the installation of subsea structures. Math Comput Model Dyn Syst 17(1):71–84

    Article  MathSciNet  Google Scholar 

  13. Fridman L, Strygin V, Polyakov A (2004) Stabilization via delayed relay control rejecting uncertainty in a time delay. Int J Robust Nonlinear Control 14(1):15–37

    Article  MathSciNet  Google Scholar 

  14. Gao D et al (2010) Adaptive fuzzy sliding mode control for robotic manipulators. World Congr Intell Control Autom 54:4811–4816 Jinan, China

    Google Scholar 

  15. Hazewinkel M (1994) Encyclopedia of mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1279-4

    Book  Google Scholar 

  16. Jalili-Kharaajoo M et al (2003) Sliding mode control of voltage-controlled magnetic levitation systems. In: Proceedings of 2003 IEEE conference on control applications. Istanbul, Turkey

  17. Kuo TC et al (2008) Sliding mode control with self-tuning law for uncertain nonlinear systems. ISA Trans 47:171–178

    Article  Google Scholar 

  18. Leonid F, Jaime M (2012) R.I.: sliding modes after the first decade of the 21st century. Springer, Berlin

    Google Scholar 

  19. Levant A, Fridman L (2010) Accuracy of homogeneous sliding modes in the presence of fast actuators. IEEE Trans Autom Control 55(3):810–814

    Article  MathSciNet  Google Scholar 

  20. Loukianov A, Espinosa-Guerra O, Castillo-Toledo B, Utkin V (2006) Integral sliding mode control for systems with time delay. In: Proceedings of 9th IEEE workshop on variable structure systems, pp 256–261

  21. Loukianov A, Fridman L, Canedo J, Sanchez E, Soto-Cota A (2008) Higher order SM block-control of nonlinear systems with unmodeled actuators: application to electric power systems and electrohydraulic servo-drives. In: Bartolini G, Fridman L, Pisano A, Usai E (eds) Modern sliding mode control theory new perspectives and applications, LNCIS. Springer, London, pp 401–426

    Chapter  Google Scholar 

  22. Melo AV, Mendes JRP, Serapiao ABS (2007) Intelligent supervision control for the vasps separator. Braz J Petrol Gas 1:67–77

    Google Scholar 

  23. Melo AV, Serapiao AB, Mendes JR (2009) Método de histerese por auto-ajuste para minimização de esforço de controle no separador submarino vasps. Revista Controle e Automação 20:105–107

    Article  Google Scholar 

  24. Orlov Y, Pisano A, Usai E (2010) Continuous state-feedback tracking of an uncertain heat diffusion process. Syst Control Lett 59(12):754–759

    Article  MathSciNet  Google Scholar 

  25. Orlov Y, Pisano A, Usai E (2011) Exponential stabilization of the uncertain wave equation via distributed dynamic input extension. IEEE Trans Autom Control 56(1):212–217

    Article  MathSciNet  Google Scholar 

  26. Pinheiro N, do Val J, Mendes R (2009) Sthocastic intervation strategy applies to a level control with a trade-off between risky operation and actuator variations. In: Joint 48th IEEE conference on decision control 28th Chinese control conference. Shangai, China

  27. Polyakov A, Poznyak A (2009) Lyapunov function design for finite-time convergence analysis: twisting controller for second order sliding mode realization. Automatica 45:444–448

    Article  MathSciNet  Google Scholar 

  28. Rosa E, Franca F, Ribeiro G (2001) The cyclone gas–liquid separator: operating mechanistic modeling. J Petrol Sci Eng 32:87–101

    Article  Google Scholar 

  29. Shiguemoto DA, Tsukada RI, Mastelaro VR, Mendes JR, Serapiao AB, Estevam V (2011) Numerical simulation of an oil and gas subsea separation and pumping system for offshore petroleum production using the method of characteristics. In: 21th Brazilian congress of mechanical engineering

  30. Shyu KK et al (1999) Robust variable structure speed control for induction motor drive. IEEE Trans Aerosp Eletron Syst 35:215–224

    Article  Google Scholar 

  31. Slotine JJE (1984) Sliding controller design for non-linear systems. Int J Control 40(2):421–434. https://doi.org/10.1080/00207178408933284

    Article  MathSciNet  MATH  Google Scholar 

  32. Slotine JJE, Li W (1991) Applied nonlinear control. Pearson, Upper Saddle River, NJ. https://cds.cern.ch/record/1228283. The book can be consulted by contacting: BE-ABP-CC3: Pfingstner, Juergen

  33. Song G, Cai L, Wang Y, Longman R (1998) A sliding mode based smooth adaptive robust controller for friction compensation. Int J Robust Nonlinear Control 8:725–739

    Article  MathSciNet  Google Scholar 

  34. Spurgeon S (2008) Sliding mode observers—a survey. Int J Syst Sci 39(8):741–746

    Article  MathSciNet  Google Scholar 

  35. Sulaiman M, Patakor FA, Ibrahim Z (2014) New methodology for chattering suppression of sliding mode control for three-phase induction motor drives. WSEAS Trans Syst Control 9:2224–2856

    Google Scholar 

  36. Tan C, Edwards C (2003) Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int J Robust Nonlinear Control 13:443–463

    Article  MathSciNet  Google Scholar 

  37. Utkin V, Guldner J, Shi J (2017) Sliding mode control in electro-mechanical systems. Automation and control engineering. CRC Press, Boca Raton. https://books.google.com.br/books?id=5glEDwAAQBAJ

  38. Utkin V, Shi J (1996) Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th conference on decision and control, Kobe, Japan, pp 4591–4596

  39. Utkin VI (1993) Sliding mode control design principles and application to electric drive. IEEE Trans Ind Electron 40:23–36

    Article  Google Scholar 

  40. Vale OR, Garcia JE, Villa M (2002) Vasps installation and operation at campos basin. Offshore Technology conference, Houston

  41. Wai RJ (2007) Fuzzy sliding mode control using adaptative tunning technique. IEEE Trans Ind Eletron 54:586–594

    Article  Google Scholar 

  42. Wylie BE, Streeter VL (1978) Fluid transients, 2nd edn. McGraw Hill, New York. https://doi.org/10.1017/S0022112094210716

    Book  Google Scholar 

  43. Yow W (1972) Numerical error on natural gas tansient calculations. Am Soc Mech Eng 94:422–428

    Google Scholar 

  44. Zhihong M, Oday M, Yu X (1999) A robust adaptive terminal sliding mode control for rigid robotic manipulators. J Intell Robot Syst 24(1):24–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique de Paula.

Additional information

Technical Editor: Victor Juliano De Negri, D.Eng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, L.H., Fortaleza, E. Continuous sliding control applied to subsea oil and gas separation. J Braz. Soc. Mech. Sci. Eng. 41, 42 (2019). https://doi.org/10.1007/s40430-018-1549-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1549-y

Keywords

Navigation