Skip to main content
Log in

Stochastic analysis of torsional drill-string vibrations considering the passage from a soft to a harder rock layer

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The drilling process is considered one of the most expensive and complex in the oil and gas industry. This paper is focused on the dynamics of a drill-string in which stick–slip oscillations can happen, reducing operational performance and increasing the costs. The main concern of this work is to analyze the consequences of a passage from a soft to a harder rock layer in the system response and how uncertainties influence this response. A one degree-of-freedom model is proposed where the top speed is prescribed, the drilling mud is represented by a viscous friction and the bit–rock interaction is represented by a non-linear model. First, the response of the system is analyzed when there is no rock transition, i.e., a single rock layer is considered. The transition from a soft to a harder rock layer is then included and the deterministic and stochastic responses of the system are assessed. The results show that different scenarios can significantly change system response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Albdiry MT, Almensory MF (2016) Failure analysis of drillstring in petroleum industry: a review. Eng Fail Anal 65:74–85. doi:10.1016/j.engfailanal.2016.03.014

    Article  Google Scholar 

  2. Bailey JJ, Finnie I (1960) An analytical study of drill-string vibration. ASME J Eng Ind 82(2):122–127. doi:10.1115/1.3663017

    Article  Google Scholar 

  3. Bakhtiari-Nejad F, Hosseinzadeh A (2017) Nonlinear dynamic stability analysis of the coupled axial-torsional motion of the rotary drilling considering the effect of axial rigid-body dynamics. Int J Non-Linear Mech 88:85–96. doi:10.1016/j.ijnonlinmec.2016.10.011

    Article  Google Scholar 

  4. Boussaada I, Mounier H, Niculescu SI, Cela A (2012) Analysis of drilling vibrations: a time-delay system approach. In: 20th Mediterranean conference on control automation (MED), 2012, pp 610–614. 10.1109/MED.2012.6265705

  5. Brett JF (1992) The genesis of bit-induced torsional drillstring vibrations. Soc Petrol Eng. doi:10.2118/21943-PA

  6. Butlin T, Langley RS (2015) An efficient model of drillstring dynamics. J Sound Vib 356:100–123. doi:10.1016/j.jsv.2015.06.033

    Article  Google Scholar 

  7. Challamel N (2000) Rock destruction effect on the stability of a drilling structure. J Sound Vib 233(2):235–254. doi:10.1006/jsvi.1999.2811

    Article  Google Scholar 

  8. Cunha A, Soize C, Sampaio R (2015) Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings. Comput Mech 56(5):849–878. doi:10.1007/s00466-015-1206-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Depouhon A, Detournay E (2014) Instability regimes and self-excited vibrations in deep drilling systems. J Sound Vib 333(7):2019–2039. doi:10.1016/j.jsv.2013.10.005

    Article  Google Scholar 

  10. Detournay E, Defourny P (1992) A phenomenological model for the drilling action of drag bits. Int J Rock Mech Min Sci Geomech Abstr 29(1):13–23. doi:10.1016/0148-9062(92)91041-3

    Article  Google Scholar 

  11. Detournay E, Richard T, Shepherd M (2008) Drilling response of drag bits: theory and experiment. Int J Rock Mech Min Sci 45(8):1347–1360. doi:10.1016/j.ijrmms.2008.01.010

    Article  Google Scholar 

  12. Franca LF (2011) A bitrock interaction model for rotarypercussive drilling. Int J Rock Mech Min Sci 48(5):827–835. doi:10.1016/j.ijrmms.2011.05.007

    Article  Google Scholar 

  13. Fridman E, Mondi S, Saldivar B (2010) Bounds on the response of a drilling pipe model. IMA J Math Control Info 27(4):513–526. doi:10.1093/imamci/dnq024

    Article  MathSciNet  MATH  Google Scholar 

  14. Halsey GW, Kyllingstad A, Kylling A (1988) Torque feedback used to cure slip-stick motion. Soc Petrol Eng. doi:10.2118/18049-MS

  15. Hareland G, Nygaard R (2007) Calculating unconfined rock strength from drilling data. American Rock Mechanics Association. U.S. Rock Mechanics Symposium, 27–31 May, Vancouver, Canada

  16. Hong L, Girsang IP, Dhupia JS (2016) Identification and control of stickslip vibrations using kalman estimator in oil-well drill strings. J Petrol Sci Eng 140:119–127. doi:10.1016/j.petrol.2016.01.017

    Article  Google Scholar 

  17. Jansen JD, van den Steen L (1995) Active damping of self-excited torsional vibrations in oil well drillstrings. J Sound Vib 179(4):647–668. doi:10.1006/jsvi.1995.0042

    Article  Google Scholar 

  18. Kamel JM, Yigit AS (2014) Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits. J Sound Vib 333(25):6885–6899. doi:10.1016/j.jsv.2014.08.001

    Article  Google Scholar 

  19. Karnopp D (1985) Computer simulation of stick-slip friction in mechanical dynamic systems. ASME J Dyn Sys Meas Control 107(1):100–103. doi:10.1115/1.3140698

    Article  Google Scholar 

  20. Khulief YA, Al-Sulaiman FA, Bashmal S (2007) Vibration analysis of drillstrings with self-excited stickslip oscillations. J Sound Vib 299(3):540–558. doi:10.1016/j.jsv.2006.06.065

    Article  Google Scholar 

  21. Kotsonis SJ, Spanos PD (1997) Chaotic and random whirling motion of drillstrings. ASME J Energy Resour Technol 119(4):217–222. doi:10.1115/1.2794993

    Article  Google Scholar 

  22. Leine RI, van Campen DH, de Kraker A, van den Steen L (1998) Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn 16(1):41–54. doi:10.1023/A:1008289604683

    Article  MATH  Google Scholar 

  23. Lima LCC, Aguiar RR, Ritto TG, Hbaieb S (2015) Analysis of the torsional stability of a simplified drillstring. In: DINAME 2015—Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, pp 22–27

  24. Lin YQ, Wang YH (1991) Stick-slip vibration of drillstings. ASME J Eng Ind 113(1):38–43. doi:10.1115/1.2899620

    Google Scholar 

  25. Navarro-Lopez EM, Suarez R (2004) Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings. In: Control Applications, 2004. Proceedings of the 2004 IEEE International Conference on, vol 2, pp 1454–1460. doi:10.1109/CCA.2004.1387580

  26. Onyia EC (1988) Relationships between formation strength, drilling strength, and electric log properties. Soc Petrol Eng. doi:10.2118/18166-MS

  27. Rampersad PR, Hareland G, Boonyapaluk P (1994) Drilling optimization using drilling data and available technology. Soc Petrol Eng. doi:10.2118/27034-MS

  28. Richard T, Germay C, Detournay E (2004) Self-excited stickslip oscillations of drill bits. Comptes Rendus Mcanique 332(8):619–626. doi:10.1016/j.crme.2004.01.016

    Article  MATH  Google Scholar 

  29. Richard T, Germay C, Detournay E (2007) A simplified model to explore the root cause of stickslip vibrations in drilling systems with drag bits. J Sound Vib 305(3):432–456. doi:10.1016/j.jsv.2007.04.015

    Article  Google Scholar 

  30. Ritto TG, Aguiar RR, Hbaieb S (2017) Validation of a drill string dynamical model and torsional stability. Meccanica. doi:10.1007/s11012-017-0628-y

  31. Ritto TG, Escalante MR, Sampaio R, Rosales MB (2013) Drill-string horizontal dynamics with uncertainty on the frictional force. J Sound Vib 332(1):145–153. doi:10.1016/j.jsv.2012.08.007

    Article  Google Scholar 

  32. Ritto TG, Sampaio R (2013) Measuring the efficiency of vertical drill-strings: a vibration perspective. Mech Res Commun 52:32–39. doi:10.1016/j.mechrescom.2013.06.003

    Article  Google Scholar 

  33. Ritto TG, Soize C, Sampaio R (2009) Non-linear dynamics of a drill-string with uncertain model of the bitrock interaction. Int J Non-Linear Mech 44(8):865–876. doi:10.1016/j.ijnonlinmec.2009.06.003

    Article  Google Scholar 

  34. Ritto TG, Soize C, Sampaio R (2010) Probabilistic model identification of the bitrock-interaction-model uncertainties in nonlinear dynamics of a drill-string. Mech Res Commun 37(6):584–589. doi:10.1016/j.mechrescom.2010.07.004

    Article  MATH  Google Scholar 

  35. Spanos PD, Chevallier AM, Politis NP (2002) Nonlinear stochastic drill-string vibrations. ASME J Vib Acoust 124(4):512–518. doi:10.1115/1.1502669

    Article  Google Scholar 

  36. Tang L, Zhu X, Shi C, Tang J, Xu D (2015) Study of the influences of rotary table speed on stick-slip vibration of the drilling system. Petroleum 1(4):382–387. doi:10.1016/j.petlm.2015.10.004

    Article  Google Scholar 

  37. Tucker RW, Wang C (2003) Torsional vibration control and cosserat dynamics of a drill-rig assembly. Meccanica 38(1):145–161. doi:10.1023/A:1022035821763

    Article  MATH  Google Scholar 

  38. Tucker WR, Wang C (1999) An integrated model for drill-string dynamics. J Sound Vib 224(1):123–165. doi:10.1006/jsvi.1999.2169

    Article  Google Scholar 

  39. Tucker WR, Wang C (1999) On the effective control of torsional vibrations in drilling systems. J Sound Vib 224(1):101–122. doi:10.1006/jsvi.1999.2172

    Article  Google Scholar 

  40. Udwadia F (1987) Response of uncertain dynamic systems. Appl Math Comput 22(2):115–150. doi:10.1016/0096-3003(87)90040-3

    MathSciNet  MATH  Google Scholar 

  41. Vromen T, Dai CH, van de Wouw N, Oomen T, Astrid P, Nijmeijer H (2015) Robust output-feedback control to eliminate stick-slip oscillations in drill-string systems. IFAC-PapersOnLine 48(6):266–271. doi:10.1016/j.ifacol.2015.08.042

    Article  Google Scholar 

  42. Zamanian M, Khadem SE, Ghazavi MR (2007) Stick-slip oscillations of drag bits by considering damping of drilling mud and active damping system. J Petrol Sci Eng 59(34):289–299. doi:10.1016/j.petrol.2007.04.008

    Article  Google Scholar 

  43. Zhu X, Tang L (2015) On the formation of limit cycle of the friction-induced stick-slip vibration in oilwell drillstring. Petroleum 1(1):63–67. doi:10.1016/j.petlm.2015.03.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the National Council for Scientific and Technological Development (CNPq) for its financial support under grant number 483391/2013, to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for its financial support under grant number AUXPE n.1197/2014 and to Carlos Chagas Filho Foundation for the Support of the Research in the State of Rio de Janeiro (FAPERJ) for its financial support under grant number E-26/201.572/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Castello.

Additional information

Technical Editor: Marcelo A. Trindade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobo, D.M., Ritto, T.G. & Castello, D.A. Stochastic analysis of torsional drill-string vibrations considering the passage from a soft to a harder rock layer. J Braz. Soc. Mech. Sci. Eng. 39, 2341–2349 (2017). https://doi.org/10.1007/s40430-017-0800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0800-2

Keywords

Navigation