Skip to main content
Log in

Non-uniform magnetic field effect on nanofluid hydrothermal treatment considering Brownian motion and thermophoresis effects

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, heat and mass transfer of nanofluid in presence of variable magnetic field is investigated. The effects of Brownian motion and thermophoresis are taken into account. Control Volume-based Finite Element Method is applied to solve the governing equations in which both effect of ferrohydrodynamic and magnetohydrodynamic are considered. The effects of Rayleigh number, Hartmann number arising from MHD, buoyancy ratio number and Lewis number on the flow and heat transfer characteristics have been examined. Results are presented in the form of streamline, isotherm, isoconcentration and heatline plots. Results show that Nusselt number has direct relationship with Rayleigh number, buoyancy ratio number and Lewis number while it has reverse relationship with Hartmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Amplitude

B :

Magnetic induction \(\left( { = \mu_{0} H} \right)\)

C p :

Specific heat at constant pressure

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

Ec :

Eckert number \(\left( { = \left( {\alpha \mu } \right)/\left[ {\left( {\rho C_{P} } \right)\Delta TL^{2} \,} \right]} \right)\)

Gr f :

Grashof number

\(\vec{g}\) :

Gravitational acceleration vector

H x , H y :

Components of the magnetic field intensity

H :

The magnetic field strength

Ha :

Hartmann number \(\left( { = LH_{0} \mu_{0} \sqrt {\sigma /\mu } } \right)\)

k :

Thermal conductivity

\(K^{\prime}\) :

Constant parameter

L :

Gap between inner and outer boundary of the enclosure L = r outr in

Le :

Lewis number \(( = \alpha /D_{B} )\)

\(Mn_{F}\) :

Magnetic number arising from FHD \(\left( { = \mu_{0} H_{0}^{2} K^{\prime}\Delta T\,L^{2} /\left( {\mu \alpha } \right)} \right)\)

M :

Magnetization \(\left( { = K^{\prime}\overline{H} \left( {T_{c}^{\prime } - T} \right)} \right)\)

Nu :

Nusselt number

N :

Number of undulations

Nb :

Brownian motion parameter \(( = (\rho c)_{p} D_{B} (\phi_{h} - \phi_{c} )/(\rho c)_{f} \alpha )\)

Nt :

Thermophoretic parameter \(( = (\rho c)_{p} D_{T} (\Delta T)/[(\rho c)_{f} \alpha T_{c} ])\)

Nr :

Buoyancy ratio number \(\left( { = \left( {\rho_{p} - \rho_{0} } \right)\left( {\phi_{h} - \phi_{c} } \right)/[\left( {1 - \phi_{c} } \right)\rho_{{f_{0} }} \beta L\left( {\Delta T} \right)]} \right)\)

Pr :

Prandtl number\(( = \mu /\rho_{f} \alpha )\)

Ra :

Thermal Rayleigh number \(( = \left( {1 - \phi_{c} } \right)\rho_{{f_{0} }} g\beta L^{3} \left( {\Delta T} \right)/\left( {\mu \alpha } \right))\)

T :

Fluid temperature

\(T_{c}^{\prime }\) :

Curie temperature

uv :

Velocity components in the x-direction and y-direction

UV :

Dimensionless velocity components in the X-direction and Y-direction

xy :

Space coordinates

X, Y :

Dimensionless space coordinates

\(\zeta\) :

Angle measured from the lower right plane

α :

Thermal diffusivity

\(\phi\) :

Volume fraction

γ :

Magnetic field strength at the source

\(\varepsilon_{1}\) :

Temperature number \(\left( { = T_{1} /\Delta T} \right)\)

\(\varepsilon_{2}\) :

Curie temperature number \(\left( { = T_{c}^{\prime } /\Delta T} \right)\)

σ :

Electrical conductivity

μ :

Dynamic viscosity

μ 0 :

Magnetic permeability of vacuum \(\left( { = 4\pi \times 10^{ - 7} {\text{Tm/A}}} \right)\)

\(\upsilon\) :

Kinematic viscosity

\(\varTheta\) :

Dimensionless temperature

ρ :

Fluid density

β :

Thermal expansion coefficient

\(\omega ,\varOmega\) :

Vorticity and dimensionless vorticity

c :

Cold

h :

Hot

ave:

Average

loc:

Local

References

  1. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  2. Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  3. Sheikholeslami M, Rashidi MM, Ganji DD (2015) Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4- water nanofluid. Comput Methods Appl Mech Eng 294:299–312

    Article  MathSciNet  Google Scholar 

  4. Hatami M, Sheikholeslami M, Ganji DD (2014) Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall. J Mol Liq 195:230–239

    Article  Google Scholar 

  5. Sheikholeslami M, Gorji-Bandpy M, Soleimani S (2013) Two phase simulation of nanofluid flow and heat transfer using heatline analysis. Int Commun Heat Mass Transf 47:73–81

    Article  Google Scholar 

  6. Rashidi MM, Ganesh NV, Hakeem AKA, Ganga B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq 198:234–238

    Article  Google Scholar 

  7. Zhang X, Huang H (2014) Effect of magnetic obstacle on fluid flow and heat transfer in a rectangular duct. Int Commun Heat Mass Transfer 51:31–38

    Article  Google Scholar 

  8. Moraveji MK, Hejazian M (2013) Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid. Int Commun Heat Mass Transfer 44:135–146

    Article  Google Scholar 

  9. Sheikholeslami M, Rashidi MM (2015) Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus 130:115

    Article  Google Scholar 

  10. Selimefendigil F, Oztop HF (2014) Effect of a rotating cylinder in forced convection of ferrofluid over a backward facing step. Int J Heat Mass Transf 71:142–148

    Article  Google Scholar 

  11. Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus, pp 129–248

  12. Ghofrani A, Dibaei MH, Sima AH, Shafii MB (2013) Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field. Exp Thermal Fluid Sci 49:193–200

    Article  Google Scholar 

  13. Kandelousi MS, Ganji DD (2015) Chapter 1—control volume finite element method (CVFEM), hydrothermal analysis in engineering using control volume finite element method, pp 1–12. doi:10.1016/B978-0-12-802950-3.00001-1

  14. Kandelousi MS, Ganji DD (2015) Chapter 2—CVFEM stream function-vorticity solution, hydrothermal analysis in engineering using control volume finite element method, pp 13–30. doi:10.1016/B978-0-12-802950-3.00002-3

  15. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Rana P, Soleimani S (2014) Magnetohydrodynamic free convection of Al2O3-water nanofluid considering Thermophoresis and Brownian motion effects. Comput Fluids 94:147–160

    Article  MathSciNet  Google Scholar 

  16. Sheikholeslami M, Vajravelu K, Rashidi MM (2016) Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf 92:339–348

    Article  Google Scholar 

  17. Sheikholeslami M, Hatami M, Ganji DD (2013) Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technol 246:327–336

    Article  Google Scholar 

  18. Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265

    Article  Google Scholar 

  19. Ashorynejad HR, Sheikholeslami M, Pop I, Ganji DD (2013) Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transfer 49:427–436

    Article  Google Scholar 

  20. Selimefendigil F, Oztop HF (2014) MHD mixed convection of nanofluid filled partially heated triangular enclosure with a rotating adiabatic cylinder. J Taiwan Inst Chem Eng 45(5):2150–2162

    Article  Google Scholar 

  21. Hayat T, Abbas Z, Pop I, Asghar S (2010) Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int J Heat Mass Transf 53:466–474

    Article  MATH  Google Scholar 

  22. Sheikholeslami M, Gorji-Bandpay M, Ganji DD (2012) Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int Commun Heat Mass Transfer 39:978–986

    Article  Google Scholar 

  23. Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by Adomian decomposition method, Appl Math Mech Engl Ed 33(1):1553–1564)

  24. Hayat T, Qasim M (2010) Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis. Int J Heat Mass Transf 53:4780–4788

    Article  MATH  Google Scholar 

  25. Garoosi F, Jahanshaloo L, Rashidi MM, Badakhsh A, Ali MA (2015) Numerical simulation of natural convection of the nanofluid in heat exchangers using a buongiorno model. Appl Math Comput 254:183–203

    Article  MathSciNet  Google Scholar 

  26. Sheikholeslami M, Rashidi MM, Al Saad DM, Firouzi F, Rokni HB, Domairry G (2015) Steady nanofluid flow between parallel plates considering Thermophoresis and Brownian effects. J King Saud Univ Sci. doi:10.1016/j.jksus.2015.06.003

    Google Scholar 

  27. Sheikholeslami M, Abelman S (2015) Two phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field. IEEE Trans Nanotechnol 14(3):561–569

    Article  Google Scholar 

  28. Sheikholeslami M, Rashidi MM (2015) Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid. J Taiwan Inst Chem Eng 56:6–15

    Article  Google Scholar 

  29. Sheikholeslami M, Bandpy MG, Ashorynejad HR (2015) Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity. Phys A Stat Mech Appl 432:58–70

    Article  Google Scholar 

  30. Garoosi F, Jahanshaloo L, Garoosi S (2015) Numerical simulation of mixed convection of the nanofluid in heat exchangers using a Buongiorno model. Powder Technol 269:296–311

    Article  Google Scholar 

  31. Sheikholeslami M, Rashidi MM, Ganji DD (2015) Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J Mol Liq 212:117–126

    Article  Google Scholar 

  32. Kandelousi MS (2014) KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A 378(45):3331–3339

    Article  MATH  Google Scholar 

  33. Sheikholeslami M, Ganji DD (2015) Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method. Phys A 417:273–286

    Article  Google Scholar 

  34. Sheikholeslami M, Abelman S, Ganji DD (2014) Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. Int J Heat Mass Transf 79:212–222

    Article  Google Scholar 

  35. Akbara NS, Khan ZH (2015) Influence of magnetic field for metachoronical beating of cilia for nanofluid with Newtonian heating. J Magn Magn Mater 381:235–242

    Article  Google Scholar 

  36. Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5:294–306. doi:10.3390/app5030294

    Article  Google Scholar 

  37. Sheikholeslami M (2015) Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng 37:1623–1633

    Article  MathSciNet  Google Scholar 

  38. Sheikholeslami M, Ganji DD, Younus Javed M, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43

    Article  Google Scholar 

  39. Sheikholeslami Mohsen, Ganji DD (2015) Unsteady nanofluid flow and heat transfer in presence of magnetic field considering thermal radiation. J Braz Soc Mech Sci Eng 37(3):895–902

    Article  Google Scholar 

  40. Sheikholeslami M, Ellahi R (2015) Simulation of ferrofluid flow for magnetic drug targeting using Lattice Boltzmann method. J Z Naturforschung A 70(2):115–124

    Google Scholar 

  41. Hakeem AKA, Vishnu Ganesha N, Ganga B (2015) Magnetic field effect on second order slip flow of nanofluid over a stretching/shrinking sheet with thermal radiation effect. J Magn Magn Mater 381:243–257

    Article  Google Scholar 

  42. Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33(8):1075–1084

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Rashidi, M.M. Non-uniform magnetic field effect on nanofluid hydrothermal treatment considering Brownian motion and thermophoresis effects. J Braz. Soc. Mech. Sci. Eng. 38, 1171–1184 (2016). https://doi.org/10.1007/s40430-015-0459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0459-5

Keywords

Navigation