Skip to main content
Log in

MHD stagnation flow towards a porous stretching sheet with suction or injection and prescribed surface heat flux

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The objective of the present study is to analyze the effect of heat generation/absorption on magnetohydrodynamic stagnation point flow and heat transfer over a porous stretching surface, with prescribed surface heat flux. The governing coupled partial differential equations are non-dimensionalized and solved analytically by homotopy perturbation method employing Padé technique. The effects of involved parameters (stretching velocity, magnetic parameter, porosity parameter, suction or injection parameter, heat flux index, heat source or sink parameter, Prandtl number) on velocity, temperature profiles are presented graphically and analyzed. The obtained results are compared with the numerical solution and with other results obtained in previous works so that the high accuracy of present results is clear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Weidman P, Paullet J (2007) Analysis of stagnation point flow toward a stretching sheet. Int J Non-Linear Mech 42:1084–1091

    Article  MATH  Google Scholar 

  2. Hiemenz K (1911) Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder. Dinglers Polytech J 236:321–324

    Google Scholar 

  3. Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647

    Article  Google Scholar 

  4. Chiam TC (1994) Stagnation-point flow towards a stretching plate. J Phys Soc Jpn 63(6):2443–2444

    Article  Google Scholar 

  5. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction and blowing. J Chem Eng 55:744–746

    Google Scholar 

  6. Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 38:517–521

    Article  Google Scholar 

  7. Mahapatra TR, Gupta AS (2003) Stagnation-point flow towards a stretching surface. Can J Chem Eng 81:258–263

    Article  Google Scholar 

  8. Lok YY, Amin N, Pop I (2006) Non-orthogonal stagnation point flow towards a stretching sheet. Int J Nonlinear Mech 41:622–627

    Article  Google Scholar 

  9. Wang CY (1984) The three-dimensional flow due to a stretching flat surface. Phys Fluids 27:1915–1917

    Article  MATH  MathSciNet  Google Scholar 

  10. Char MI, Chen CK (1988) Temperature field in non-Newtonian flow over a stretching plate with variable heat flux. Int J Heat Mass Transf 31:917–921

    Article  MATH  Google Scholar 

  11. Chen CK, Char MI (1988) Heat transfer of a continuous, stretching surface with suction or blowing. J Math Anal Appl 135:568–580

    Article  MATH  MathSciNet  Google Scholar 

  12. Elbashbeshy EMA (1998) Heat transfer over a stretching surface with variable surface heat flux. J Phys D Appl Phys 31:1951–1954

    Article  Google Scholar 

  13. Ishak A, Nazar R, Pop I (2008) Heat transfer over a stretching surface with variable heat flux in micropolar fluids. Phys Lett A 372:559–561

    Article  MATH  Google Scholar 

  14. Anjali Devi SP, Ganga B (2008) Dissipation effects on MHD nonlinear flow and heat transfer past a porous surface with prescribed heat flux. J Appl Fluid Mech 3:1–6

    Google Scholar 

  15. Hayat T, Javed T, Abbas Z (2009) MHD flow of a micropolar fluid near a stagnation point towards a non-linear stretching surface. Nonlinear Anal Real World Appl 10:1514–1526

    Article  MATH  MathSciNet  Google Scholar 

  16. Rashidi MM, Abelman S, Freidoonimehr N (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf 62:515–525

    Article  Google Scholar 

  17. Ishak A, Jafar K, Nazar R, Pop I (2009) MHD stagnation point flow towards a stretching sheet. Physica A 388:3377–3383

    Article  Google Scholar 

  18. Mohyud-Din ST, Yıldırım A, Sezer SA, Usman M (2010) Modified variational iteration method for free-convective boundary-layer equation using Pade´ approximation. Math Probl Eng 318298:1–11

  19. Mirgolbabaei H, Ganji DD, Etghani MM, Sobati A (2009) Adapted variational iteration method and axisymmetric flow over a stretching sheet. World J Model Simul 5:307–314

    Google Scholar 

  20. Sajid M, Hayat T (2009) The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet. Chaos Solitons Fract 39:1317–1323

    Article  MATH  Google Scholar 

  21. Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D., Shanghai Jiao Tong University

  22. Rashidi MM (2009) The modified differential transform method for solving MHD boundary-layer equations. Comput Phys Commun 180:2210–2217

    Article  MATH  MathSciNet  Google Scholar 

  23. He JH (1999) Homotopy perturbation technique. Comput Math Appl Mech Eng 178:257–262

  24. He JH (2000) A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int J Non-Linear Mech 35:37–43

    Article  MATH  Google Scholar 

  25. He JH (2003) Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 135:73–79

    Article  MATH  MathSciNet  Google Scholar 

  26. He JH (2006) Homotopy perturbation method for solving boundary value problems. Phys Lett A 350:87–88

    Article  MATH  MathSciNet  Google Scholar 

  27. Fathizadeh M, Rashidi F (2009) Boundary layer convective heat transfer with pressure gradient using homotopy perturbation method (HPM) over a flat plate. Chaos Solitons Fract 42:2413–2419

    Article  MATH  Google Scholar 

  28. Ganji DD, Ganji SS, Karimpour S, Ganji ZZ (2010) Numerical study of homotopy-perturbation method applied to Burgers equation in fluid. Numer Methods Partial Differ Eq 26:917–930

    MATH  MathSciNet  Google Scholar 

  29. Ariel PD, Hayat T, Asghar S (2006) Homotopy perturbation method and axisymmetric flow over a stretching sheet. Int J Nonlinear Sci Numer Simul 7:399–406

    Article  Google Scholar 

  30. Yıldırım A, Sezer SA (2010) Non-perturbative solution of the MHD flow over a non-linear stretching sheet by HPM-Pade technique. Z Naturforsch A J Phys Sci 65:1106–1110

    Google Scholar 

  31. Domairry D, Ziabkhsh Z, Domiri H (2011) Determination of temperature distribution for annular fins with temperature dependent thermal conductivity by HPM. Therm Sci 15(5):111–115

    Article  Google Scholar 

  32. Torabi M, Yaghoobi H, Saedodin S (2011) Assessment of homotopy perturbation method in nonlinear convective-radiative non-fourier conduction heat transfer equation with variable coefficient. Therm Sci 15(2):263–274

    Article  Google Scholar 

  33. Inc M (2010) He’s homotopy perturbation method for solving Korteweg–de Vries Burgers equation with initial condition. Numer Methods Partial Differ 26:1224–1235

    MATH  MathSciNet  Google Scholar 

  34. Baker GA (1975) Essentials of Padé approximants. Academic, London

    MATH  Google Scholar 

  35. Boyd J (1997) Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain. Comput Phys 11(3):299–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jalilpour.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalilpour, B., Jafarmadar, S. & Ganji, D.D. MHD stagnation flow towards a porous stretching sheet with suction or injection and prescribed surface heat flux. J Braz. Soc. Mech. Sci. Eng. 37, 837–847 (2015). https://doi.org/10.1007/s40430-014-0218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0218-z

Keywords

Navigation