Skip to main content
Log in

On the application of SUPG/θ-method in 2D advection–diffusion-reaction simulation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The SUPG/θ-method for applications in 2D advection–diffusion transport simulation is reviewed and it is presented in details. Spatial discretization is done with finite elements method with stabilized streamline upwind Petrov–Galerkin method, and time discretization was done with θ-stable finite difference operator. Numerical tests showed that this algorithm is general and robust and it can be applied to simulate simple problems of mass transport; for example, pure advection phenomenon in structured mesh, as well as reactive advection–diffusion transport with an unstructured mesh, and not well-behaved velocity field. The method was applied in a simulation of the transport of total phosphorus in the Lake Água Preta, and the results were validated by comparison with experimental data. The computational cost is directly associated with the value of the safety factor, introduced to assure the stability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(\varvec{C}\) :

Damping matrix

\(C\) :

Mass concentration, mg/L

D :

Diffusion coefficient or diffusivity, m2/s

h :

Local size mesh

k :

Reaction coefficient

\(\varvec{N}\) :

Basis function vector

n :

Normal vector

n :

Time step

\(P\) :

Perturbation term to the weighting function

s :

Safety factor

S :

Source term

t :

Time, s

u :

Velocity vector, m/s

\(w\) :

Weight function

x :

Spatial vector, m

\(\Upgamma\) :

Contour of the model

\(\theta\) :

Method for time discretization

\(\tau\) :

Stabilization parameter

\({\varvec{\Upomega}}\) :

Domain of the model

References

  1. Bochev PB, Gunzburger MD, Shadid JN (2004) Stability of the SUPG finite element method for transient advection-diffusion problems. Comput Methods Appl Mech Eng 193:2301–2323

    Article  MATH  MathSciNet  Google Scholar 

  2. Burman E (2010) Consistent SUPG-methods for transient transport problems: stability and convergence. Comput Methods Appl Mech Eng 199:1114–1123

    Article  MATH  MathSciNet  Google Scholar 

  3. Carnahan B, Luther HA, Wilkes JO (1969) Applied numerical methods. John Wiley & Sons Ltd, New York

    MATH  Google Scholar 

  4. Donea J, Huerta A (2003) Finite element methods for flow problems. John Wiley & Sons Ltd, England, p 362

    Book  Google Scholar 

  5. Franca LP, Hauke G, Masud A (2006) Revisiting stabilized finite element methods for the advective-diffusive equation. Comput Methods Appl Mech Eng 195:1560–1572

    Article  MATH  MathSciNet  Google Scholar 

  6. Gockenbach MS (2006) Understanding and implementing the finite element method. Soc Ind Appl Math, Philadelphia, p 363

    Book  MATH  Google Scholar 

  7. Griebel M, Dornseifer T, Neunhoeffer T (1998) Numerical simulation in fluid dynamics: a pratical introduction, society for industrial and applied mathematics. Philadelphia, p 234

  8. Hervouet J-M (2007) Hydrodynamics of free surface flows: modelling with the finite element method. John Wiley & Sons Inc., Chichester, p 366

    Book  Google Scholar 

  9. Holanda PS, Blanco CJC, Cruz DOA et al (2011) Hydrodynamic modeling and morphological analysis of lake Água Preta: one of the water sources of Belém-PA-Brazil. J Brazilian Soc Mech Sci Eng v. XXXIII1(2):117–124

    Article  Google Scholar 

  10. Moreland K (2011) The paraview tutorial version 3.10. Sandia national laboratories. http://www.paraview.org/Wiki/images/2/2d/ParaViewTutorial310.pdf

  11. Lewis WL, Nithiarasu P, Seetharamu KN (2004) Fundamentals of the finite element method for heat and fuid flow. John Wiley & Sons Ltd., England, p 356

    Book  Google Scholar 

  12. Massabó M, Cianci R, Paladino O (2011) An analytical solution of the advection dispersion equation in a bounded domain and its application to laboratory experiments. J Appl Math 2011:1–14

  13. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York

    MATH  Google Scholar 

  14. Rubin H, Atkinson J (2001) Environmental fluid mechanics. Marcel Dekker Inc., New York, p 752

    Book  Google Scholar 

  15. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. Siam J Sci Stat Comput 7:856–869

    Article  MATH  MathSciNet  Google Scholar 

  16. Secretan Y, Leclerc M (1998) Modeleur: a 2D hydrodynamic GIS and simulation software. In: Hyroinformatics-98. Copenhagen, pp 1-18

  17. Silva JP (2010) “Avaliação da qualidade da Água Superficial utilizada no sistema de abastecimento público do município de Belém (PA)”, Dissertação (Mestrado). ITEC/UFPA, Belém

    Google Scholar 

  18. Socolofsky SA, Jirka GH (2004) Special topics in mixing and transport process in the environment, Online material: https://ceprofs.civil.tamu.edu/ssocolofsky/cven489/Book/Book.htm

  19. Solín P (2006) Partial differential equations and the finite element method. John Wiley & Sons Inc., New Jersey, p 499

    Google Scholar 

  20. Tezduyar T, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4(1):71–88

    MATH  MathSciNet  Google Scholar 

  21. Tezduyar T (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    MATH  MathSciNet  Google Scholar 

  22. Tezduyar T (2001) Adaptive determination of the finite element stabilization parameters. ECCOMAS computational fluid dynamics conference. Swansea, Wales, UK, 4–7 Sept 2001

  23. Vasconcelos VMM, Souza CF (2011) Caracterização dos parâmetros de qualidade da água do manancial Utinga, Belém, PA, Brazil. Revista Ambiente e Água 6(2):305–324

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to thanks to FAPESPA for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rômulo Correa Lima.

Additional information

Technical Editor: Francisco Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, R.C., Mesquita, A.L.A., Blanco, C.J.C. et al. On the application of SUPG/θ-method in 2D advection–diffusion-reaction simulation. J Braz. Soc. Mech. Sci. Eng. 36, 591–603 (2014). https://doi.org/10.1007/s40430-013-0099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0099-6

Keywords

Navigation